skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Over-voltage protection system and method

Abstract

An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diode indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.

Inventors:
; ;
Publication Date:
Research Org.:
National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1354787
Patent Number(s):
9,640,982
Application Number:
14/533,762
Assignee:
General Electric Company NETL
DOE Contract Number:
AC26-07NT42677
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Nov 05
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Chi, Song, Dong, Dong, and Lai, Rixin. Over-voltage protection system and method. United States: N. p., 2017. Web.
Chi, Song, Dong, Dong, & Lai, Rixin. Over-voltage protection system and method. United States.
Chi, Song, Dong, Dong, and Lai, Rixin. 2017. "Over-voltage protection system and method". United States. doi:. https://www.osti.gov/servlets/purl/1354787.
@article{osti_1354787,
title = {Over-voltage protection system and method},
author = {Chi, Song and Dong, Dong and Lai, Rixin},
abstractNote = {An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diode indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 5
}

Patent:

Save / Share:
  • A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the atmore » least one threshold temperature.« less
  • A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less
  • The state of charge of a rechargeable battery (12), such as those made from lithium, nickel-cadmium or metal hydrides, can be accurately determined by monitoring the rate of change of battery voltage over time (dv/dt), which parameter has empirically been found to change dramatically as the battery reaches complete discharge. 4 figs.
  • Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area,more » thereby preventing second breakdown destruction of the transistors.« less
  • A rechargeable electrochemical cell pack is provided having a casing holding a plurality of electrically interconnected cells and having circuit breaking means to guard against the possibility of excessive supply and consumption of electrical power and the risk of damage or injury incident thereto. The circuit breaker comprises a small current fuse contained internally of the cell pack so as to give an external visible indication of its state and is removably mounted on an access door for replacement purposes.