skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of crystallite size on the structure and magnetism of ferrihydrite

Journal Article · · Environmental Science: Nano
DOI:https://doi.org/10.1039/C5EN00191A· OSTI ID:1354345

The structure and magnetic properties of nano-sized (1.6 to 4.4 nm) ferrihydrite samples are systematically investigated through a combination of X-ray diffraction (XRD), X-ray pair distribution function (PDF), X-ray absorption spectroscopy (XAS) and magnetic analyses. The XRD, PDF and Fe K-edge XAS data of the ferrihydrite samples are all fitted well with the Michel ferrihydrite model, indicating similar local-, medium- and long-range ordered structures. PDF and XAS fitting results indicate that, with increasing crystallite size, the average coordination numbers of Fe–Fe and the unit cell parameter c increase, while Fe2 and Fe3 vacancies and the unit cell parameter a decrease. Mössbauer results indicate that the surface layer is relatively disordered, which might have been caused by the random distribution of Fe vacancies. These results support Hiemstra's surface-depletion model in terms of the location of disorder and the variations of Fe2 and Fe3 occupancies with size. Magnetic data indicate that the ferrihydrite samples show antiferromagnetism superimposed with a ferromagnetic-like moment at lower temperatures (100 K and 10 K), but ferrihydrite is paramagnetic at room temperature. In addition, both the magnetization and coercivity decrease with increasing ferrihydrite crystallite size due to strong surface effects in fine-grained ferrihydrites. Smaller ferrihydrite samples show less magnetic hyperfine splitting and a lower unblocking temperature (TB) than larger samples. The dependence of magnetic properties on grain size for nano-sized ferrihydrite provides a practical way to determine the crystallite size of ferrihydrite quantitatively in natural environments or artificial systems.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC00112704
OSTI ID:
1354345
Report Number(s):
BNL-112861-2016-JA; ESNNA4
Journal Information:
Environmental Science: Nano, Vol. 3, Issue 1; ISSN 2051-8153
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English

Similar Records

Novel Synthesis and Structural Analysis of Ferrihydrite
Journal Article · Wed Jul 25 00:00:00 EDT 2012 · Inorg. Chem. · OSTI ID:1354345

Binding Geometries of Silicate Species on Ferrihydrite Surfaces
Journal Article · Fri Jan 05 00:00:00 EST 2018 · ACS Earth and Space Chemistry · OSTI ID:1354345

Biotransformation of Two-Line Silica-Ferrihydrite by a Dissimilatory Fe(III)-Reducing Bacterium: Formation of Carbonate Green Rust in the Presence of Phosphate
Journal Article · Thu Jul 01 00:00:00 EDT 2004 · Geochimica et Cosmochimica Acta, 68(13):2799-2814 · OSTI ID:1354345