skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method

Abstract

A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1353318
Report Number(s):
PNNL-SA-112547
Journal ID: ISSN 0953-8984; AT2030110
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physics. Condensed Matter; Journal Volume: 29; Journal Issue: 14
Country of Publication:
United States
Language:
English

Citation Formats

Gao, N., Yang, L., Gao, F., Kurtz, R. J., West, D., and Zhang, S. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method. United States: N. p., 2017. Web. doi:10.1088/1361-648X/aa574b.
Gao, N., Yang, L., Gao, F., Kurtz, R. J., West, D., & Zhang, S. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method. United States. doi:10.1088/1361-648X/aa574b.
Gao, N., Yang, L., Gao, F., Kurtz, R. J., West, D., and Zhang, S. Mon . "Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method". United States. doi:10.1088/1361-648X/aa574b.
@article{osti_1353318,
title = {Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method},
author = {Gao, N. and Yang, L. and Gao, F. and Kurtz, R. J. and West, D. and Zhang, S.},
abstractNote = {A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.},
doi = {10.1088/1361-648X/aa574b},
journal = {Journal of Physics. Condensed Matter},
number = 14,
volume = 29,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}
  • We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numericalmore » stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in the continuum.« less
  • Relaxation of a self-assembled structure of 144 peptide amphiphile (PA) molecules into cylindrical nanofibers is studied using atomistic molecular dynamics simulations including explicit water with physiological ion concentration. The PA for these studies includes a hydrophobic alkyl chain that is attached to the N-terminus of the sequence SLSLAAAEIKVAV. The self-assembly is initiated with PA molecules in a roughly cylindrical configuration, as suggested from previous experimental and theoretical investigations, and the cylindrical configuration that results is found to be stable during 40 ns simulations. In the converged structure of the resulting nanofiber, the cylinder radius is ~44 Å, a result thatmore » is consistent with experimental results. Water and sodium ions can penetrate into the peptide portion of the fiber but not between the alkyl chains. Even though each PA has an identical sequence, a broad distribution of secondary structure is found in the converged structure of the nanofiber. The β-sheet population for the SLSL and IKV segments of the peptide is ~25%, which is consistent with previous circular dichroism results. We also found that the epitope sequence IKVAV is located on the surface of the nanofiber, as designed for the promotion of the neurite growth. Our findings will be useful for designing new PA fibers that have improved bioactive properties.« less
  • Relaxation of a self-assembled structure of 144 peptide amphiphile (PA) molecules into cylindrical nanofibers is studied using atomistic molecular dynamics simulations including explicit water with physiological ion concentration. The PA for these studies includes a hydrophobic alkyl chain that is attached to the N-terminus of the sequence SLSLAAAEIKVAV. The self-assembly is initiated with PA molecules in a roughly cylindrical configuration, as suggested from previous experimental and theoretical investigations, and the cylindrical configuration that results is found to be stable during 40 ns simulations. In the converged structure of the resulting nanofiber, the cylinder radius is ~44 Å, a result thatmore » is consistent with experimental results. Water and sodium ions can penetrate into the peptide portion of the fiber but not between the alkyl chains. Even though each PA has an identical sequence, a broad distribution of secondary structure is found in the converged structure of the nanofiber. The β-sheet population for the SLSL and IKV segments of the peptide is ~25%, which is consistent with previous circular dichroism results. We also found that the epitope sequence IKVAV is located on the surface of the nanofiber, as designed for the promotion of the neurite growth. Our findings will be useful for designing new PA fibers that have improved bioactive properties.« less
  • Abstract not provided.