skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydropower Modeling Challenges

Abstract

Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production cost and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1353003
Report Number(s):
NREL/TP-5D00-68231
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; hydropower; flexibility; variable; renewable; generation; grid; model; National Renewable Energy Laboratory; NREL

Citation Formats

Stoll, Brady, Andrade, Juan, Cohen, Stuart, Brinkman, Greg, and Brancucci Martinez-Anido, Carlo. Hydropower Modeling Challenges. United States: N. p., 2017. Web. doi:10.2172/1353003.
Stoll, Brady, Andrade, Juan, Cohen, Stuart, Brinkman, Greg, & Brancucci Martinez-Anido, Carlo. Hydropower Modeling Challenges. United States. doi:10.2172/1353003.
Stoll, Brady, Andrade, Juan, Cohen, Stuart, Brinkman, Greg, and Brancucci Martinez-Anido, Carlo. Wed . "Hydropower Modeling Challenges". United States. doi:10.2172/1353003. https://www.osti.gov/servlets/purl/1353003.
@article{osti_1353003,
title = {Hydropower Modeling Challenges},
author = {Stoll, Brady and Andrade, Juan and Cohen, Stuart and Brinkman, Greg and Brancucci Martinez-Anido, Carlo},
abstractNote = {Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production cost and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.},
doi = {10.2172/1353003},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 19 00:00:00 EDT 2017},
month = {Wed Apr 19 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • A model has been developed to assess the impacts of hydropower development at navigation dams on dissolved oxygen (DO) concentrations in the upper Ohio River basin. Field data were used to fit statistical models of aeration at each dam. The Streeter-Phelps equations were used to model DO concentrations between dams. Input data sources were compiled, and the design conditions used for assessment of hydropower impacts were developed. The model was implemented both as Lotus 1-2-3 spreadsheets and as a FORTRAN program. This report contains users' guides for both of these implementations. The sensitivities and uncertainty of the model were analyzed.more » Modeled DO concentrations are sensitive to water temperature and flow rates, and sensitivities to dam aeration are relatively high in reaches where dam aeration rates are high. Uncertainty in the model was low in reaches dominated by dam aeration and higher in reaches with low dam aeration rates. The 95% confidence intervals for the model range from about /+-/ 0.5 mg/L to about /+-/ 1.5 mg/L.« less
  • Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.« less
  • Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.« less
  • Hydro Green Energy, LLC (HGE) will complete the design, fabrication and laboratory testing of a scaled, vertically stackable, low-head hydropower turbine called the Modular Bulb Turbine (MBT). HGE will also complete a summary report that includes the laboratory testing results and analysis of the tests. Project Goals: Design, model and test modular bulb turbine for installation in numerous HGE low-head hydropower projects at non-powered USACE dams. Project Results: The sub-scale prototype was tested successfully at a leading US hydraulic laboratory. Laboratory data results agreed well with predicted results from numerical modeling.