skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction

Abstract

We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ~ 1.1 with 4 × 10 14 M⊙ ≤ M200 ≤ 3 × 10 15M⊙. Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ~m* + 2, finding that: (1)The intrinsic rest frame g – r colour width of the red sequence (RS) population is ~0.03 out to z ~ 0.85 with a preference for an increase to ~0.07 at z = 1, and (2) the prominence of the RS declines beyond z ~ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of c g = 3.59$$+0.20\atop{–0.18}$$, 5.37$$+0.27\atop{-0.24}$$ and 1.38$$+0.21\atop{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with ~40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ~55 per cent at z = 1 to ~80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ~14 per cent. Finally, we discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [1];  [1];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [1];  [11];  [12];  [13];  [14] more »;  [1];  [15];  [12];  [16];  [10];  [17];  [18];  [19];  [20];  [21];  [1];  [22];  [23];  [13];  [2];  [16];  [24];  [25];  [4];  [26];  [16];  [10];  [26];  [27];  [24];  [28];  [29];  [18];  [30];  [16];  [16];  [12];  [31];  [32];  [33];  [34];  [23];  [35];  [36];  [18];  [35];  [4];  [16];  [19];  [37];  [38];  [26];  [39];  [18];  [11];  [40];  [4];  [16] « less
  1. Ludwig-Maximilians-Univ., Munich (Germany); Excellence Cluster Universe, Garching (Germany)
  2. Ludwig-Maximilians-Univ., Munich (Germany); Excellence Cluster Universe, Garching (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany)
  3. Ludwig-Maximilians-Univ., Munich (Germany); Cerro Tololo Inter-American Observatory, La Serena (Chile)
  4. Cerro Tololo Inter-American Observatory, La Serena (Chile)
  5. Univ. College London, London (United Kingdom); Rhodes Univ., Grahamstown (South Africa)
  6. Colby College, Waterville, ME (United States); Harvard Univ., Cambridge, MA (United States)
  7. Univ. College London, London (United Kingdom); Institut d'Astrophysique de Paris, Paris (France); Sorbonne Univ., Paris (France)
  8. Carnegie Observatories, Pasadena, CA (United States)
  9. Institut d'Astrophysique de Paris, Paris (France); Sorbonne Univ., Paris (France)
  10. Univ. College London, London (United Kingdom)
  11. Univ. of Portsmouth, Portsmouth (United Kingdom)
  12. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janeiro (Brazil)
  13. Univ. of Illinois, Urbana, IL (United States); National Center for Supercomputing Applications, Urbana, IL (United States)
  14. Institut de Ciencies de l'Espai, Bellaterra (Spain); The Barcelona Institute of Science and Technology, Bellaterra (Barcelona) (Spain)
  15. Univ. of Portsmouth, Portsmouth (United Kingdom); Univ. of Southampton, Southampton (United Kingdom)
  16. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  17. Univ. of Pennsylvania, Philadelphia, PA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)
  18. Univ. of Michigan, Ann Arbor, MI (United States)
  19. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil)
  20. Institut de Ciencies de l'Espai, Bellaterra (Spain)
  21. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)
  22. Univ. of Florida, Gainesville, FL (United States)
  23. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  24. The Ohio State Univ., Columbus, OH (United States)
  25. Univ. de Montreal, Montreal, QC (Canada)
  26. Univ. of Pennsylvania, Philadelphia, PA (United States)
  27. Texas A & M Univ., College Station, TX (United States)
  28. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  29. Princeton Univ., Princeton, NJ (United States)
  30. The Barcelona Institute of Science and Technology, Bellaterra (Barcelona) (Spain); Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)
  31. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  32. Univ. of Melbourne, Parkville, VIC (Australia)
  33. Univ. of Sussex, Brighton (United Kingdom)
  34. Univ. of Arizona, Tucson, AZ (United States)
  35. Centro de Investigaciones Energeticas, Madrid (Spain)
  36. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil)
  37. Univ. of Hawaii at Manoa, Honolulu, HI (United States); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  38. Univ. of California, Davis, CA (United States)
  39. National Center for Supercomputing Applications, Urbana, IL (United States)
  40. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1352814
Alternate Identifier(s):
OSTI ID: 1360951; OSTI ID: 1366530
Report Number(s):
FERMILAB-PUB-16-021-AE
Journal ID: ISSN 0035-8711; KJ0402000; KJ0503000; ERKJ311; ERKJEPM; TRN: US1700947
Grant/Contract Number:
AC05-00OR22725; AC02-76SF00515; AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 467; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: clusters: general; galaxies: clusters: individual; galaxies: evolution; galaxies: formation; galaxies: luminosity function; mass function

Citation Formats

Hennig, C., Mohr, Joseph J., Zenteno, A., Desai, S., Dietrich, J. P., Bocquet, S., Strazzullo, V., Saro, A., Abbott, T. M. C., Abdalla, F. B., Bayliss, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Capasso, R., Capozzi, D., Carnero, A., Kind, M. Carrasco, Carretero, J., Chiu, I., D’Andrea, C. B., daCosta, L. N., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Fausti-Neto, A., Fosalba, P., Frieman, J., Gangkofner, C., Gonzalez, A., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Honscheid, K., Hlavacek-Larrondo, J., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Martini, P., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Neilsen, E., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C., Romer, A. K., Rozo, E., Rykoff, E. S., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stalder, B., Stanford, S. A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., and Zhang, Y. Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction. United States: N. p., 2017. Web. doi:10.1093/mnras/stx175.
Hennig, C., Mohr, Joseph J., Zenteno, A., Desai, S., Dietrich, J. P., Bocquet, S., Strazzullo, V., Saro, A., Abbott, T. M. C., Abdalla, F. B., Bayliss, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Capasso, R., Capozzi, D., Carnero, A., Kind, M. Carrasco, Carretero, J., Chiu, I., D’Andrea, C. B., daCosta, L. N., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Fausti-Neto, A., Fosalba, P., Frieman, J., Gangkofner, C., Gonzalez, A., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Honscheid, K., Hlavacek-Larrondo, J., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Martini, P., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Neilsen, E., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C., Romer, A. K., Rozo, E., Rykoff, E. S., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stalder, B., Stanford, S. A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., & Zhang, Y. Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction. United States. doi:10.1093/mnras/stx175.
Hennig, C., Mohr, Joseph J., Zenteno, A., Desai, S., Dietrich, J. P., Bocquet, S., Strazzullo, V., Saro, A., Abbott, T. M. C., Abdalla, F. B., Bayliss, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Capasso, R., Capozzi, D., Carnero, A., Kind, M. Carrasco, Carretero, J., Chiu, I., D’Andrea, C. B., daCosta, L. N., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Fausti-Neto, A., Fosalba, P., Frieman, J., Gangkofner, C., Gonzalez, A., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Honscheid, K., Hlavacek-Larrondo, J., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Martini, P., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Neilsen, E., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C., Romer, A. K., Rozo, E., Rykoff, E. S., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stalder, B., Stanford, S. A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., and Zhang, Y. Mon . "Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction". United States. doi:10.1093/mnras/stx175. https://www.osti.gov/servlets/purl/1352814.
@article{osti_1352814,
title = {Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction},
author = {Hennig, C. and Mohr, Joseph J. and Zenteno, A. and Desai, S. and Dietrich, J. P. and Bocquet, S. and Strazzullo, V. and Saro, A. and Abbott, T. M. C. and Abdalla, F. B. and Bayliss, M. and Benoit-Lévy, A. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Capasso, R. and Capozzi, D. and Carnero, A. and Kind, M. Carrasco and Carretero, J. and Chiu, I. and D’Andrea, C. B. and daCosta, L. N. and Diehl, H. T. and Doel, P. and Eifler, T. F. and Evrard, A. E. and Fausti-Neto, A. and Fosalba, P. and Frieman, J. and Gangkofner, C. and Gonzalez, A. and Gruen, D. and Gruendl, R. A. and Gupta, N. and Gutierrez, G. and Honscheid, K. and Hlavacek-Larrondo, J. and James, D. J. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and March, M. and Marshall, J. L. and Martini, P. and McDonald, M. and Melchior, P. and Miller, C. J. and Miquel, R. and Neilsen, E. and Nord, B. and Ogando, R. and Plazas, A. A. and Reichardt, C. and Romer, A. K. and Rozo, E. and Rykoff, E. S. and Sanchez, E. and Santiago, B. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Stalder, B. and Stanford, S. A. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Vikram, V. and Walker, A. R. and Zhang, Y.},
abstractNote = {We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ~ 1.1 with 4 × 1014 M⊙ ≤ M200 ≤ 3 × 1015M⊙. Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ~m* + 2, finding that: (1)The intrinsic rest frame g – r colour width of the red sequence (RS) population is ~0.03 out to z ~ 0.85 with a preference for an increase to ~0.07 at z = 1, and (2) the prominence of the RS declines beyond z ~ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of cg = 3.59$+0.20\atop{–0.18}$, 5.37$+0.27\atop{-0.24}$ and 1.38$+0.21\atop{-0.19}$ for the full, the RS and the blue non-RS populations, respectively, but with ~40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ~55 per cent at z = 1 to ~80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ~14 per cent. Finally, we discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr.},
doi = {10.1093/mnras/stx175},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 467,
place = {United States},
year = {Mon Jan 23 00:00:00 EST 2017},
month = {Mon Jan 23 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • We study the galaxy populations in 74 Sunyaev Zeldovich Effect (SZE) selected clusters from the South Pole Telescope (SPT) survey that have been imaged in the science verification phase of the Dark Energy Survey (DES). The sample extends up tomore » $$z\sim 1.1$$ with $$4 \times 10^{14} M_{\odot}\le M_{200}\le 3\times 10^{15} M_{\odot}$$. Using the band containing the 4000~\AA\ break and its redward neighbor, we study the color-magnitude distributions of cluster galaxies to $$\sim m_*+2$$, finding: (1) the intrinsic rest frame $g-r$ color width of the red sequence (RS) population is $$\sim$$0.03 out to $$z\sim0.85$$ with a preference for an increase to $$\sim0.07$$ at $z=1$ and (2) the prominence of the RS declines beyond $$z\sim0.6$$. The spatial distribution of cluster galaxies is well described by the NFW profile out to $$4R_{200}$$ with a concentration of $$c_{\mathrm{g}} = 3.59^{+0.20}_{-0.18}$$, $$5.37^{+0.27}_{-0.24}$$ and $$1.38^{+0.21}_{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with $$\sim40$$\% to 55\% cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region $$N_{200}$$ exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The red sequence (RS) fraction within $$R_{200}$$ is $$(68\pm3)$$\% at $z=0.46$, varies from $$\sim$$55\% at $z=1$ to $$\sim$$80\% at $z=0.1$, and exhibits intrinsic variation among clusters of $$\sim14$$\%. We discuss a model that suggests the observed redshift trend in RS fraction favors a transformation timescale for infalling field galaxies to become RS galaxies of 2 to 3~Gyr.« less
  • Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggestsmore » that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.« less
  • Over half of the census of massive galaxies at z {approx} 2 are dominated by quiescent stellar populations. The formation mechanism for these galaxies is still under debate, with models relying either on massive and early mergers or cold accretion. It is therefore imperative to understand in detail the properties of these galaxies. We present here a detailed analysis of the star formation history (SFH) of FW4871, a massive galaxy at z = 1.893 {+-} 0.002. We compare rest-frame optical and NUV slitless grism spectra from the Hubble Space Telescope with a large set of composite stellar populations to constrainmore » the underlying SFH. Even though the morphology features prominent tidal tails, indicative of a recent merger, there is no sign of ongoing star formation within an aperture encircling one effective radius, which corresponds to a physical extent of 2.6 kpc. A model assuming truncation of an otherwise constant SFH gives a formation epoch z{sub F} {approx} 10 with a truncation after 2.7 Gyr, giving a mass-weighted age of 1.5 Gyr and a stellar mass of (0.8-3) Multiplication-Sign 10{sup 11} M{sub Sun} (the intervals representing the output from different population synthesis models), implying star formation rates of 30-110 M{sub Sun} yr{sup -1}. A more complex model including a recent burst of star formation places the age of the youngest component at 145{sup +450}{sub -70} Myr, with a mass contribution lower than 20%, and a maximum amount of dust reddening of E(B - V) < 0.4 mag (95% confidence levels). This low level of dust reddening is consistent with the low emission observed at 24 {mu}m, corresponding to rest-frame 8 {mu}m, where polycyclic aromatic hydrocarbon emission should contribute significantly if a strong formation episode were present. The color profile of FW4871 does not suggest a significant radial trend in the properties of the stellar populations out to 3 R{sub e}. We suggest that the recent merger that formed FW4871 is responsible for the quenching of its star formation.« less
  • The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey of the 50 deg{sup 2} Spitzer SWIRE Legacy fields, designed with the primary aim of creating the first large, homogeneously selected sample of massive clusters at z > 1. SpARCS uses an infrared adaptation of the two-filter cluster red-sequence technique. In this paper, we report Keck/LRIS spectroscopic confirmation of two new exceptionally rich galaxy clusters, SpARCS J161315+564930 at z = 0.871 +- 0.002, with 14 high-confidence members and a rest-frame velocity dispersion of sigma{sub v} = 1230 +- 320 km s{sup -1}, and SpARCS J161641+554513 atmore » z = 1.161 +- 0.003, with seven high-confidence members (including one active galactic nucleus) and a rest-frame velocity dispersion of sigma{sub v} = 950 +- 330 km s{sup -1}. We also report confirmation of a third new system, SpARCS J161037+552417 at z = 1.210 +- 0.002, with seven high-confidence members and a rest-frame velocity dispersion of sigma{sub v} = 410 +- 300 km s{sup -1}. These three new spectroscopically confirmed clusters further demonstrate the efficiency and effectiveness of two-filter imaging for detecting bona fide galaxy clusters at high redshift. We conclude by demonstrating that prospects are good for the current generation of surveys aiming to estimate cluster redshifts and masses at z {approx}> 1 directly from optical-infrared imaging.« less