skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates

Abstract

We synthesized new complex manganese vanadate materials as high-quality single crystals in multi-millimeter lengths using a high-temperature, high-pressure hydrothermal method. We grew one compound, Mn 5(VO 4) 2(OH) 4, from Mn 2O 3 and V 2O 5 in 3 M CsOH at 580 °C and 1.5 kbar. Changing the mineralizer to 1 M CsOH/3MCsCl leads to the formation of another product, Mn 6O(VO 4) 2(OH). Both compounds were structurally characterized by single-crystal X-ray diffraction (Mn 5(VO 4) 2(OH) 4: C2/m, Z = 2, a = 9.6568(9) Å, b = 9.5627(9) Å, c = 5.4139(6) Å, β = 98.529(8)°; Mn 6O(VO 4) 2(OH): P21/m, Z = 2, a = 8.9363(12) Å, b = 6.4678(8) Å, c = 10.4478(13) Å, β = 99.798(3)°), revealing interesting low-dimensional transition-metal features. Mn 5(VO 4) 2(OH) 4 possesses complex honeycomb-type Mn–O layers, built from edge-sharing [MnO 6] octahedra in the bc plane, with bridging vanadate groups connecting these layers along the a-axis. Mn 6O(VO 4) 2(OH) presents a more complicated structure with both octahedral [MnO 6] and trigonal bipyramidal [MnO 5] units. A different pattern of planar honeycomb sheets are formed by edge-shared [MnO6] octahedra, and these sublattices are connected through edge-shared dimers of [MnO 5]more » trigonal bipyramids to form corrugated sheets. Vanadate groups again condense the sheets into a three-dimensional framework. Infrared and Raman spectroscopies indicated the presence of OH groups and displayed characteristic Raman scattering due to vanadate groups. Furthermore, temperature-dependent magnetic studies indicated Curie–Weiss behavior above 100 K with significant anti-ferromagnetic coupling for both compounds, with further complex magnetic behavior at lower temperatures. The data indicate canted anti-ferromagnetic order below 57 K in Mn 5(VO 4) 2(OH) 4 and below 45 K in Mn 6O(VO 4) 2(OH). Members of another class of compounds, K 2M 3(VO 4) 2(OH) 2 (M = Mn, Co), also containing a honeycomb-type sublattice, were also synthesized to allow a comparison of the structural features across all three structure types and to demonstrate extension to other transition metals.« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [1]
  1. Clemson Univ., SC (United States). Dept. of Chemistry and Center for Optical Materials Science and Engineering Technologies
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1352765
Grant/Contract Number:
AC05-00OR22725; DMR-1410727
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 55; Journal Issue: 18; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Sanjeewa, Liurukara. D., McGuire, Michael A., McMillen, Colin D., Willett, Daniel, Chumanov, George, and Kolis, Joseph W.. Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates. United States: N. p., 2016. Web. doi:10.1021/acs.inorgchem.6b01286.
Sanjeewa, Liurukara. D., McGuire, Michael A., McMillen, Colin D., Willett, Daniel, Chumanov, George, & Kolis, Joseph W.. Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates. United States. doi:10.1021/acs.inorgchem.6b01286.
Sanjeewa, Liurukara. D., McGuire, Michael A., McMillen, Colin D., Willett, Daniel, Chumanov, George, and Kolis, Joseph W.. 2016. "Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates". United States. doi:10.1021/acs.inorgchem.6b01286. https://www.osti.gov/servlets/purl/1352765.
@article{osti_1352765,
title = {Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates},
author = {Sanjeewa, Liurukara. D. and McGuire, Michael A. and McMillen, Colin D. and Willett, Daniel and Chumanov, George and Kolis, Joseph W.},
abstractNote = {We synthesized new complex manganese vanadate materials as high-quality single crystals in multi-millimeter lengths using a high-temperature, high-pressure hydrothermal method. We grew one compound, Mn5(VO4)2(OH)4, from Mn2O3 and V2O5 in 3 M CsOH at 580 °C and 1.5 kbar. Changing the mineralizer to 1 M CsOH/3MCsCl leads to the formation of another product, Mn6O(VO4)2(OH). Both compounds were structurally characterized by single-crystal X-ray diffraction (Mn5(VO4)2(OH)4: C2/m, Z = 2, a = 9.6568(9) Å, b = 9.5627(9) Å, c = 5.4139(6) Å, β = 98.529(8)°; Mn6O(VO4)2(OH): P21/m, Z = 2, a = 8.9363(12) Å, b = 6.4678(8) Å, c = 10.4478(13) Å, β = 99.798(3)°), revealing interesting low-dimensional transition-metal features. Mn5(VO4)2(OH)4 possesses complex honeycomb-type Mn–O layers, built from edge-sharing [MnO6] octahedra in the bc plane, with bridging vanadate groups connecting these layers along the a-axis. Mn6O(VO4)2(OH) presents a more complicated structure with both octahedral [MnO6] and trigonal bipyramidal [MnO5] units. A different pattern of planar honeycomb sheets are formed by edge-shared [MnO6] octahedra, and these sublattices are connected through edge-shared dimers of [MnO5] trigonal bipyramids to form corrugated sheets. Vanadate groups again condense the sheets into a three-dimensional framework. Infrared and Raman spectroscopies indicated the presence of OH groups and displayed characteristic Raman scattering due to vanadate groups. Furthermore, temperature-dependent magnetic studies indicated Curie–Weiss behavior above 100 K with significant anti-ferromagnetic coupling for both compounds, with further complex magnetic behavior at lower temperatures. The data indicate canted anti-ferromagnetic order below 57 K in Mn5(VO4)2(OH)4 and below 45 K in Mn6O(VO4)2(OH). Members of another class of compounds, K2M3(VO4)2(OH)2 (M = Mn, Co), also containing a honeycomb-type sublattice, were also synthesized to allow a comparison of the structural features across all three structure types and to demonstrate extension to other transition metals.},
doi = {10.1021/acs.inorgchem.6b01286},
journal = {Inorganic Chemistry},
number = 18,
volume = 55,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4works
Citation information provided by
Web of Science

Save / Share:
  • The x-band electron spin resonance spectra of calcium or strontium fluoride powder mechanically mixed with manganese fluoride, manganese ammonium fluoride, or manganese dioxide powder were observed immediately after nofixing, after periods of time, and after heating at various temperatures in an argon stream or in air. The proportion of manganese to calcium or strontium was 0.5%. The spectrum immediately after mixing is that of the manganese compound alone. Subsequent spectra depended on the grain size of the alkaline earth fluoride powder. (L.N.N.)
  • In large single crystals of A 2Mn 2V 2O 7F 2 (A=Rb, Cs) and Mn 2VO 4F were grown using a high-temperature (~600 °C) hydrothermal technique. We utilized single crystal X-ray diffraction and powder X-ray diffraction in order to characterize the structures, which both possess MnO 4F 2 building blocks. The A 2Mn 2V 2O 7F 2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb 2Mn 2V 2O 7F 2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs 2Mn 2V 2O 7F 2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed ofmore » zigzag chains of edge-sharing MnO 4F 2 units running along the a-axis, and interconnected through V 2O 7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn 2+ indicated that Cs 2Mn 2V 2O 7F 2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs 2Mn 2V 2O 7F 2. Mn 2(VO 4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn 2+. Our interpenetrating chains are additionally connected through isolated VO 4 tetrahedra to form the condensed structure.« less
  • Large single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO{sub 4}F{sub 2} building blocks. The A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains ofmore » edge-sharing MnO{sub 4}F{sub 2} units running along the a-axis, and interconnected through V{sub 2}O{sub 7} pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn{sup 2+} indicated that Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} is antiferromagnetic with a Neél temperature, T{sub N}=~3 K and a Weiss constant, θ, of −11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}. Mn{sub 2}(VO{sub 4})F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn{sup 2+}. These interpenetrating chains are additionally connected through isolated VO{sub 4} tetrahedra to form the condensed structure. - Graphical abstract: New vanadate fluorides A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}(VO{sub 4})F have been synthesized hydrothermally. Upon cooling, the one-dimensional Mn(II) substructure results in antiferromagnetic ordering. Display Omitted - Highlights: • Single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}, (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown hydrothermally. • The use of fluoride mineralizers in the synthesis led to the formation of new compounds without OH{sup −} groups. • The structure of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} features zigzag chains of MnO{sub 4}F{sub 2} units. • Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} exhibits antiferromagnetic ordering with a Neel temperature of ~3 K. • Mn{sub 2}VO{sub 4}F possesses a condensed framework structure with disordered fluorine atoms.« less
  • We study numerically the nature of the diffusion process on a honeycomb and a quasi-lattice, where a point particle, moving along the bonds of the lattice, scatters from randomly places scatterers on the lattice sites according to strictly deterministic rules. For the honeycomb lattice fully occupied by fixed rotators two (symmetric) isolated critical points appear to be present, with the same hyperscaling relation as for the square and the triangular lattices. No such points appear to exist for the quasi-lattice. A comprehensive comparison is made with the behavior on the previously studied square and triangular lattices. A great variety ofmore » diffusive behavior is found, ranging from propagation, super-diffusion, normal, quasi-normal, and anomalous, to absence of diffusion. The influence of the scattering rules as well as of the lattice structure on the diffusive behavior of a point particle moving on the all lattices studied so far is summarized.« less