skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid

Abstract

Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1352570
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Science; Journal Volume: 353; Journal Issue: 6298
Country of Publication:
United States
Language:
English

Citation Formats

Asadi, M., Kim, K., Liu, C., Addepalli, A. V., Abbasi, P., Yasaei, P., Phillips, P., Behranginia, A., Cerrato, J. M., Haasch, R., Zapol, P., Kumar, B., Klie, R. F., Abiade, J., Curtiss, L. A., and Salehi-Khojin, A. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. United States: N. p., 2016. Web. doi:10.1126/science.aaf4767.
Asadi, M., Kim, K., Liu, C., Addepalli, A. V., Abbasi, P., Yasaei, P., Phillips, P., Behranginia, A., Cerrato, J. M., Haasch, R., Zapol, P., Kumar, B., Klie, R. F., Abiade, J., Curtiss, L. A., & Salehi-Khojin, A. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. United States. doi:10.1126/science.aaf4767.
Asadi, M., Kim, K., Liu, C., Addepalli, A. V., Abbasi, P., Yasaei, P., Phillips, P., Behranginia, A., Cerrato, J. M., Haasch, R., Zapol, P., Kumar, B., Klie, R. F., Abiade, J., Curtiss, L. A., and Salehi-Khojin, A. Thu . "Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid". United States. doi:10.1126/science.aaf4767.
@article{osti_1352570,
title = {Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid},
author = {Asadi, M. and Kim, K. and Liu, C. and Addepalli, A. V. and Abbasi, P. and Yasaei, P. and Phillips, P. and Behranginia, A. and Cerrato, J. M. and Haasch, R. and Zapol, P. and Kumar, B. and Klie, R. F. and Abiade, J. and Curtiss, L. A. and Salehi-Khojin, A.},
abstractNote = {Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.},
doi = {10.1126/science.aaf4767},
journal = {Science},
number = 6298,
volume = 353,
place = {United States},
year = {Thu Jul 28 00:00:00 EDT 2016},
month = {Thu Jul 28 00:00:00 EDT 2016}
}