Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps
Abstract
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 1040 arcmin (corresponding to physical scales of 310 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a bestfit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to pvalues 0.35 andmore »
 Authors:
 more »
 Publication Date:
 Research Org.:
 SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
 Sponsoring Org.:
 USDOE Office of Science (SC), High Energy Physics (HEP) (SC25)
 OSTI Identifier:
 1352544
 Report Number(s):
 FERMILABPUB16161AE; arXiv:1605.02036
Journal ID: ISSN 00358711; 1456127
 Grant/Contract Number:
 AC0207CH11359; 291329; AC0276SF00515; AC0500OR22725
 Resource Type:
 Journal Article: Accepted Manuscript
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Additional Journal Information:
 Journal Volume: 466; Journal Issue: 2; Journal ID: ISSN 00358711
 Publisher:
 Royal Astronomical Society
 Country of Publication:
 United States
 Language:
 English
 Subject:
 79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: weak; cosmology: observations; largescale structure of Universe
Citation Formats
Clerkin, L., Kirk, D., Manera, M., Lahav, O., Abdalla, F., Amara, A., Bacon, D., Chang, C., Gaztañaga, E., Hawken, A., Jain, B., Joachimi, B., Vikram, V., Abbott, T., Allam, S., Armstrong, R., BenoitLévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carrasco Kind, M., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Eifler, T. F., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Melchior, P., Miquel, R., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., SevillaNoarbe, I., Smith, R. C., SoaresSantos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., and Walker, A. R.. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. United States: N. p., 2016.
Web. doi:10.1093/mnras/stw2106.
Clerkin, L., Kirk, D., Manera, M., Lahav, O., Abdalla, F., Amara, A., Bacon, D., Chang, C., Gaztañaga, E., Hawken, A., Jain, B., Joachimi, B., Vikram, V., Abbott, T., Allam, S., Armstrong, R., BenoitLévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carrasco Kind, M., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Eifler, T. F., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Melchior, P., Miquel, R., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., SevillaNoarbe, I., Smith, R. C., SoaresSantos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., & Walker, A. R.. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. United States. doi:10.1093/mnras/stw2106.
Clerkin, L., Kirk, D., Manera, M., Lahav, O., Abdalla, F., Amara, A., Bacon, D., Chang, C., Gaztañaga, E., Hawken, A., Jain, B., Joachimi, B., Vikram, V., Abbott, T., Allam, S., Armstrong, R., BenoitLévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carrasco Kind, M., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Eifler, T. F., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Melchior, P., Miquel, R., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., SevillaNoarbe, I., Smith, R. C., SoaresSantos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., and Walker, A. R.. 2016.
"Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps". United States.
doi:10.1093/mnras/stw2106. https://www.osti.gov/servlets/purl/1352544.
@article{osti_1352544,
title = {Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps},
author = {Clerkin, L. and Kirk, D. and Manera, M. and Lahav, O. and Abdalla, F. and Amara, A. and Bacon, D. and Chang, C. and Gaztañaga, E. and Hawken, A. and Jain, B. and Joachimi, B. and Vikram, V. and Abbott, T. and Allam, S. and Armstrong, R. and BenoitLévy, A. and Bernstein, G. M. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Carrasco Kind, M. and Crocce, M. and Cunha, C. E. and D'Andrea, C. B. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Eifler, T. F. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and Honscheid, K. and James, D. J. and Kent, S. and Kuehn, K. and Kuropatkin, N. and Lima, M. and Melchior, P. and Miquel, R. and Nord, B. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sanchez, E. and Schubnell, M. and SevillaNoarbe, I. and Smith, R. C. and SoaresSantos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Walker, A. R.},
abstractNote = {It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 1040 arcmin (corresponding to physical scales of 310 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a bestfit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to pvalues 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge Nbody simulation.},
doi = {10.1093/mnras/stw2106},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 2,
volume = 466,
place = {United States},
year = 2016,
month = 8
}
Web of Science

It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirmmore »Cited by 1

Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the countsincells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg ^{2}. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that themore »Cited by 1 
Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps
We measure the redshift evolution of galaxy bias from a magnitudelimited galaxy sample by combining the galaxy density maps and weak lensing shear maps for amore » 
Galaxy bias from the Dark Energy Survey Science Verification data: Combining galaxy density maps and weak lensing maps
We measure the redshift evolution of galaxy bias for a magnitudelimited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ~116 deg ^{2} area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later reexamined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1σ error bars inmore »Cited by 7 
Galaxy bias from the Dark Energy Survey Science Verification data: Combining galaxy density maps and weak lensing maps
Here, we measure the redshift evolution of galaxy bias for a magnitudelimited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ~116 deg ^{2} area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later reexamined in a companion paper (Pujol et al. 2016) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy biasmore »Cited by 7