skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfiphilic nickel phosphosulfide enabled Li 2S impregnation in 3D graphene cages for Li-S batteries

Abstract

A 3D graphene cage with a thin layer of electrodeposited nickel phosphosulfide for Li 2S impregnation, using ternary nickel phosphosulphide as a highly conductive coating layer for stabilized polysulfide chemistry, is accomplished by the combination of theoretical and experimental studies. As a result, the 3D interconnected graphene cage structure leads to high capacity, good rate capability and excellent cycling stability in a Li 2S cathode.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1352541
Alternate Identifier(s):
OSTI ID: 1401267
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 12; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; lithium-sulfur batteries; graphene cage; sulfiphilic; nickel phosphosulfide; lithium sulfide

Citation Formats

Zhou, Guangmin, Sun, Jie, Jin, Yang, Chen, Wei, Zu, Chenxi, Zhang, Rufan, Qiu, Yongcai, Zhao, Jie, Zhuo, Denys, Liu, Yayuan, Tao, Xinyong, Liu, Wei, Yan, Kai, Lee, Hye Ryoung, and Cui, Yi. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. United States: N. p., 2017. Web. doi:10.1002/adma.201603366.
Zhou, Guangmin, Sun, Jie, Jin, Yang, Chen, Wei, Zu, Chenxi, Zhang, Rufan, Qiu, Yongcai, Zhao, Jie, Zhuo, Denys, Liu, Yayuan, Tao, Xinyong, Liu, Wei, Yan, Kai, Lee, Hye Ryoung, & Cui, Yi. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. United States. doi:10.1002/adma.201603366.
Zhou, Guangmin, Sun, Jie, Jin, Yang, Chen, Wei, Zu, Chenxi, Zhang, Rufan, Qiu, Yongcai, Zhao, Jie, Zhuo, Denys, Liu, Yayuan, Tao, Xinyong, Liu, Wei, Yan, Kai, Lee, Hye Ryoung, and Cui, Yi. Mon . "Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries". United States. doi:10.1002/adma.201603366. https://www.osti.gov/servlets/purl/1352541.
@article{osti_1352541,
title = {Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries},
author = {Zhou, Guangmin and Sun, Jie and Jin, Yang and Chen, Wei and Zu, Chenxi and Zhang, Rufan and Qiu, Yongcai and Zhao, Jie and Zhuo, Denys and Liu, Yayuan and Tao, Xinyong and Liu, Wei and Yan, Kai and Lee, Hye Ryoung and Cui, Yi},
abstractNote = {A 3D graphene cage with a thin layer of electrodeposited nickel phosphosulfide for Li2S impregnation, using ternary nickel phosphosulphide as a highly conductive coating layer for stabilized polysulfide chemistry, is accomplished by the combination of theoretical and experimental studies. As a result, the 3D interconnected graphene cage structure leads to high capacity, good rate capability and excellent cycling stability in a Li2S cathode.},
doi = {10.1002/adma.201603366},
journal = {Advanced Materials},
number = 12,
volume = 29,
place = {United States},
year = {Mon Jan 30 00:00:00 EST 2017},
month = {Mon Jan 30 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 11
  • Here, tremendous efforts have been made to design the cathode of Li–S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS 2 vapour. The obtained structure features crystalline Li 2S nanoparticles wrapped by few-layer graphene (Li 2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode designmore » enables promising electrochemical performance. More notably, at a loading of 10 mg Li2S cm –2, the electrode exhibits a high reversible capacity of 1,160 mAh g –1s, namely, an area capacity of 8.1 mAh cm –2. Li 2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li 2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g –1s as well as stable cycle performance.« less
    Cited by 7
  • Cited by 2
  • Single crystals of the new compounds Li{sub 6}[(UO{sub 2}){sub 12}(PO{sub 4}){sub 8}(P{sub 4}O{sub 13})] (1), Li{sub 5}[(UO{sub 2}){sub 13}(AsO{sub 4}){sub 9}(As{sub 2}O{sub 7})] (2), Li[(UO{sub 2}){sub 4}(AsO{sub 4}){sub 3}] (3) and Li{sub 3}[(UO{sub 2}){sub 7}(AsO{sub 4}){sub 5}O)] (4) have been prepared using high-temperature solid state reactions. The crystal structures have been solved by direct methods: 1-monoclinic, C2/m, a=26.963(3) A, b=7.063(1) A, c=19.639(1) A, beta=126.890(4){sup o}, V=2991.2(6) A{sup 3}, Z=2, R{sub 1}=0.0357 for 3248 unique reflections with |F{sub 0}|>=4sigma{sub F}; 2-triclinic, P1-bar, a=7.1410(8) A, b=13.959(1) A, c=31.925(1) A, alpha=82.850(2){sup o}, beta=88.691(2){sup o}, gamma=79.774(3){sup o}, V=3107.4(4) A{sup 3}, Z=2, R{sub 1}=0.0722 formore » 9161 unique reflections with |F{sub 0}|>=4sigma{sub F}; 3-tetragonal, I4{sub 1}/amd, a=7.160(3) A, c=33.775(9) A, V=1732(1) A{sup 3}, Z=4, R{sub 1}=0.0356 for 318 unique reflections with |F{sub 0}|>=4sigma{sub F}; 4-tetragonal, P4-bar, a=7.2160(5) A, c=14.6540(7) A, V=763.04(8) A{sup 3}, Z=1, R{sub 1}=0.0423 for 1600 unique reflections with |F{sub 0}|>=4sigma{sub F}. Structures of all the phases under consideration are based on complex 3D frameworks consisting of different types of uranium polyhedra (UO{sub 6} and UO{sub 7}) and different types of tetrahedral TO{sub 4} anions (T=P or As): PO{sub 4} and P{sub 4}O{sub 13} in 1, AsO{sub 4} and As{sub 2}O{sub 7} in 2, and single AsO{sub 4} tetrahedra in 3 and 4. In the structures of 1 and 2, UO{sub 7} pentagonal bipyramids share edges to form (UO{sub 5}){sub i}nfinity chains extended along the b axis in 1 and along the a axis in 2. The chains are linked via single TO{sub 4} tetrahedra into tubular units with external diameters of 11 A in 1 and 11.5 A in 2, and internal diameters of 4.1 A in 1 and 4.5 A in 2. The channels accommodate Li{sup +} cations. The tubular units are linked into 3D frameworks by intertubular complexes. Structures of 3 and 4 are based on 3D frameworks composed on layers united by (UO{sub 5}){sub i}nfinity infinite chains. Cation-cation interactions are observed in 2, 3, and 4. In 2, the structure contains a trimeric unit with composition [O=U(1)=O]-U(13)-[O=U(2)=O]. In the structures of 3 and 4, T-shaped dimers are observed. In all the structures, Li{sup +} cations are located in different types of cages and channels and compensate negative charges of anionic 3D frameworks. - Graphical abstract: The crystal structures of Li{sub 5}[(UO{sub 2}){sub 13}(AsO{sub 4}){sub 9}(As{sub 2}O{sub 7})] separated into tubular units and intertubular complexes.« less
  • Lithium-sulfur battery is a promising next-generation energy storage system because of its potentially three to five times higher energy density than that of traditional lithium ion batteries. However, the dissolution and precipitation of soluble polysulfides during cycling initiate a series of key-chain reactions that significantly shorten battery life. Herein, we demonstrate that through a simple but effective strategy, significantly improved cycling performance is achieved for high sulfur loading electrodes through controlling the nucleation and precipitation of polysulfieds on the electrode surface. More than 400 or 760 stable cycling are successfully displayed in the cells with locked discharge capacity of 625more » mAh g -1 or 500 mAh g -1, respectively. The nucleation and growth process of dissolved polysulfides has been electrochemically altered to confine the thickness of discharge products passivated on the cathode surface, increasing the utilization rate of sulfur while avoiding severe morphology changes on the electrode. More importantly, the exposure of new lithium metal surface to the S-containing electrolyte is also greatly reduced through this strategy, largely minimizing the anode corrosion caused by polysulfides. This work interlocks the electrode morphologies and its evolution with electrochemical interference to modulate cell performances by using Li-S system as a platform, providing different but critical directions for this community.« less