skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Landscape heterogeneity reduces coyote predation on white-tailed deer fawns

Abstract

Coyote (Canis latrans) predation on white-tailed deer (Odocoileus virginianus) fawns in southeastern North America has led to deer population declines in some areas. Research or management efforts initiated in response to coyote predation on fawns have primarily focused on implementation of reduced antlerless deer harvest or coyote control to mitigate population declines. Vegetation characteristics may influence coyote hunting efficiency, but the potential influence of land cover at large scales in the southeastern United States is underexplored. We investigated whether mortality risk was affected by landscape characteristics within fawn home ranges for a sample of 165 fawns on the United States Department of Energy’s Savannah River Site (SRS), South Carolina, 2007–2012. We monitored fawns every 8 hours to ≥ 4 weeks of age and 1–3 times daily to 12 weeks of age. We included only surviving or coyote-predated fawns in the dataset. The most supported model describing hazard ratios included the length of edge (i.e., area where 2 land cover types joined) in fawn home ranges. Probability of coyote predation increased 1.26 times for each 968-m decrease in edge within a fawn’s simulated home range (29.1-ha circular buffer) under this model. Further, fawns with the least edge in their home rangesmore » were >2 times more likely to be depredated by a coyote than fawns with the greatest edge availability. Support for other models was relatively low, but informative variables (e.g., mean patch fractal dimension, Shannon’s diversity index, mean forest patch size) supported a general trend that as fawn home ranges became more homogeneous and contained larger patches with less edge and fewer cover types, predation risk increased. These findings are consistent with similar work in the midwestern United States, despite landscape differences between regions. The combined weight of evidence suggests maintenance of a heterogeneous landscape consisting of relatively small dispersed patches may reduce fawn losses to coyotes. In conclusion, this information may also be used to identify areas susceptible to greater fawn predation rates across large spatial scales. However, the relatively long forestry rotation lengths and large scale of consistent forest management on the SRS are uncommon in the southeastern United States and the mechanism for the pattern we observed is unclear. Therefore, our results may not be applicable to sites with different forest management practices.« less

Authors:
 [1];  [2];  [2];  [3]
  1. Auburn Univ., AL (United States). School of Forestry and Wildlife Sciences
  2. USDA Forest Service, New Ellenton, SC (United States). Southern Research Station
  3. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Warnell School of Forestry and Natural Resources; Univ. of Georgia, Athens, GA (United States)
Publication Date:
Research Org.:
Savannah River Site (SRS), New Ellenton, SC (United States). USDA Forest Service
Sponsoring Org.:
USDOE Office of Environmental Management (EM), Office of Science and Technology (EM-50); United States Department of Agriculture (USDA)
OSTI Identifier:
1352537
Report Number(s):
17-01-p
Journal ID: ISSN 0022-541X; 17-01-p
Grant/Contract Number:
AI09-00SR22188
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Wildlife Management
Additional Journal Information:
Journal Volume: 81; Journal Issue: 4; Journal ID: ISSN 0022-541X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 54 ENVIRONMENTAL SCIENCES; Canis latrans; coyote; fawn; habitat; Odocoileus virginianus; predation; survival; white-tailed deer

Citation Formats

Gulsby, William D., Kilgo, John C., Vukovich, Mark, and Martin, James A.. Landscape heterogeneity reduces coyote predation on white-tailed deer fawns. United States: N. p., 2017. Web. doi:10.1002/jwmg.21240.
Gulsby, William D., Kilgo, John C., Vukovich, Mark, & Martin, James A.. Landscape heterogeneity reduces coyote predation on white-tailed deer fawns. United States. doi:10.1002/jwmg.21240.
Gulsby, William D., Kilgo, John C., Vukovich, Mark, and Martin, James A.. Tue . "Landscape heterogeneity reduces coyote predation on white-tailed deer fawns". United States. doi:10.1002/jwmg.21240. https://www.osti.gov/servlets/purl/1352537.
@article{osti_1352537,
title = {Landscape heterogeneity reduces coyote predation on white-tailed deer fawns},
author = {Gulsby, William D. and Kilgo, John C. and Vukovich, Mark and Martin, James A.},
abstractNote = {Coyote (Canis latrans) predation on white-tailed deer (Odocoileus virginianus) fawns in southeastern North America has led to deer population declines in some areas. Research or management efforts initiated in response to coyote predation on fawns have primarily focused on implementation of reduced antlerless deer harvest or coyote control to mitigate population declines. Vegetation characteristics may influence coyote hunting efficiency, but the potential influence of land cover at large scales in the southeastern United States is underexplored. We investigated whether mortality risk was affected by landscape characteristics within fawn home ranges for a sample of 165 fawns on the United States Department of Energy’s Savannah River Site (SRS), South Carolina, 2007–2012. We monitored fawns every 8 hours to ≥ 4 weeks of age and 1–3 times daily to 12 weeks of age. We included only surviving or coyote-predated fawns in the dataset. The most supported model describing hazard ratios included the length of edge (i.e., area where 2 land cover types joined) in fawn home ranges. Probability of coyote predation increased 1.26 times for each 968-m decrease in edge within a fawn’s simulated home range (29.1-ha circular buffer) under this model. Further, fawns with the least edge in their home ranges were >2 times more likely to be depredated by a coyote than fawns with the greatest edge availability. Support for other models was relatively low, but informative variables (e.g., mean patch fractal dimension, Shannon’s diversity index, mean forest patch size) supported a general trend that as fawn home ranges became more homogeneous and contained larger patches with less edge and fewer cover types, predation risk increased. These findings are consistent with similar work in the midwestern United States, despite landscape differences between regions. The combined weight of evidence suggests maintenance of a heterogeneous landscape consisting of relatively small dispersed patches may reduce fawn losses to coyotes. In conclusion, this information may also be used to identify areas susceptible to greater fawn predation rates across large spatial scales. However, the relatively long forestry rotation lengths and large scale of consistent forest management on the SRS are uncommon in the southeastern United States and the mechanism for the pattern we observed is unclear. Therefore, our results may not be applicable to sites with different forest management practices.},
doi = {10.1002/jwmg.21240},
journal = {Journal of Wildlife Management},
number = 4,
volume = 81,
place = {United States},
year = {Tue Mar 07 00:00:00 EST 2017},
month = {Tue Mar 07 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km 2 unitsmore » on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km 2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (w i = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to vegetation cover, either directly or in interaction with coyote abundance. When the objective is to increase the recruitment of white-tailed deer, we conclude that neither coyote control nor vegetation management appear effective. Reduction of the antlerless harvest may be necessary to meet this objective, but this harvest strategy warrants additional research in Southeastern deer populations.« less
  • Abstract: Coyotes (Canis latrans) are novel predators throughout the southeastern United States and their depredation of white-tailed deer (Odocoileus virginianus) neonates may explain observed declines in some deer populations in the region, but direct evidence for such a relationship is lacking. Our objective was to quantify neonate survival rates and causes of mortality at the United States Department of Energy's Savannah River Site (SRS), South Carolina to directly evaluate degree of predation in this deer population. From 2006 to 2009, we radio-monitored 91 neonates captured with the aid of vaginal implant transmitters in pregnant adult females and opportunistic searches. Overallmore » Kaplan Meier survival rate to 16 weeks of age was 0.230 (95% CI = 0.155-0.328), and it varied little among years. Our best-fitting model estimated survival at 0.220 (95% CI = 0.144-0.320). This model included a quadratic time trend variable (lowest survival rate during the first week of life and increasing to near 1.000 around week 10), and Julian date of birth (survival probability declining as date of birth increased). Predation by coyotes was the most frequent cause of death among the 70 monitored neonates that died, definitively accounting for 37% of all mortalities and potentially accounting for as much as 80% when also including probable coyote predation. Predation by bobcats (Felis rufus) accounted for 7% (definitive) to 9% (including probable bobcat predation) of mortalities. The level of coyote-induced mortality we observed is consistent with the low recruitment rates exhibited in the SRS deer population since establishment of coyotes at the site. If representative of recruitment rates across South Carolina, current harvest levels appear unsustainable. This understanding is consistent with the recent declining trend in the statewide deer population. The effects of coyote predation on recruitment should be considered when setting harvest goals, regardless of whether local deer population size is currently above or below desired levels, because coyotes can substantially reduce fawn recruitment. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.« less
  • The authors evaluated the health of 18 radio-collared deer [13 mule deer (Odocoileus hemionus) and 5 white-tailed deer (O. virginianus)] from the Rocky Mountain Arsenal, near Denver, Colorado, USA, a Superfund site contaminated with a variety of materials, including organochlorine pesticides, metals and nerve gas production by-products. Radio-collared deer were tracked for 1 to 3 years (1989--1992) to identify relative exposure to contaminants based on telemetry locations plotted on grid maps depicting known soil contaminant concentrations. At the end of the study, all animals were in fair or good body condition at the time of necropsy. Mean ages of mulemore » deer and white-tailed deer were 7.4 and 10.6 years, respectively. At necropsy, tissues were collected from the deer for serology, histopathology, and analysis for eight chlorinated hydrocarbons and two metals. Detectable residues of mercury were found in the kidneys of 10 deer, dieldrin was found in fat, liver, and brain, and DDE was found in the muscle of one animal. Relative exposure estimates derived from telemetry and soil contamination data were correlated with tissue levels of dieldrin and mercury. Two mule deer had severe testicular atrophy, and one of these animals also had antler deformities. The prevalence of antibodies against epizootic hemorrhagic disease serotype 2 was 85%.« less
  • Recent localized declines in white-tailed deer ( Odocoileus virginianus) populations in the southeastern United States have been linked to increasing predation pressure from coyotes ( Canis latrans), a novel predator to the region. Studies have documented coyotes as the leading cause of mortality for neonates, and 1 study documented coyotes as a mortality factor for adult females. However, no study has used field-based vital rates to conduct sensitivity analyses or model deer population trajectories under potential harvest or predator removal strategies. We used low, medium, and high values of fawn survival, adult female survival, and fecundity data collected from Fortmore » Bragg Military Installation, North Carolina to demonstrate the current declining population trajectory for deer (λ = 0.905; low λ = 0.788, high λ = 1.003). Consistent with other studies of ungulates, we determined adult female survival was the most sensitive and elastic vital rate. Further, for 3 potential management (“what if”) scenarios, we projected the population for 10 years using estimated vital rates. Reducing adult female harvest (λ = 0.935; low λ = 0.875, high λ = 1.002) and coyote removal (λ = 0.995; low λ = 0.898, high λ = 1.081) reduced the current population decline, whereas combining both approaches (λ = 1.024; low λ = 0.898, high λ = 1.141) resulted in population increases. Our data indicate that for low-density deer populations with heavy predation pressure on neonates, protecting adult females from harvest may not completely offset population declines. Coyote removal might be a necessary strategy because it could possibly increase very low fawn survival, which appears to be the most important vital rate influencing λ in our study. However, managers may have to start with reductions in adult female harvest because coyote removal would have to be continuous and consistently effective, making it an impractical management approach by itself.« less
  • Cited by 1