skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
DOE - BASIC ENERGY SCIENCESNSFDOE-NNSAFOREIGN
OSTI Identifier:
1352255
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal Volume: 114; Journal Issue: 13
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Shu, Yu, Yu, Dongli, Hu, Wentao, Wang, Yanbin, Shen, Guoyin, Kono, Yoshio, Xu, Bo, He, Julong, Liu, Zhongyuan, and Tian, Yongjun. Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth. United States: N. p., 2017. Web. doi:10.1073/pnas.1615874114.
Shu, Yu, Yu, Dongli, Hu, Wentao, Wang, Yanbin, Shen, Guoyin, Kono, Yoshio, Xu, Bo, He, Julong, Liu, Zhongyuan, & Tian, Yongjun. Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth. United States. doi:10.1073/pnas.1615874114.
Shu, Yu, Yu, Dongli, Hu, Wentao, Wang, Yanbin, Shen, Guoyin, Kono, Yoshio, Xu, Bo, He, Julong, Liu, Zhongyuan, and Tian, Yongjun. Mon . "Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth". United States. doi:10.1073/pnas.1615874114.
@article{osti_1352255,
title = {Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth},
author = {Shu, Yu and Yu, Dongli and Hu, Wentao and Wang, Yanbin and Shen, Guoyin and Kono, Yoshio and Xu, Bo and He, Julong and Liu, Zhongyuan and Tian, Yongjun},
abstractNote = {},
doi = {10.1073/pnas.1615874114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 13,
volume = 114,
place = {United States},
year = {Mon Mar 13 00:00:00 EDT 2017},
month = {Mon Mar 13 00:00:00 EDT 2017}
}
  • Condensation of thermally evaporated Bi on (002) graphite, at temperatures of 300-523 K, was studied using in situ reflection high-energy electron diffraction (RHEED) and room temperature ex situ atomic force microscopy (AFM). For deposition at temperatures below 415{+-}5 K, transmission RHEED patterns of Bi appeared at an average thickness of {approx}0.5 monolayer (ML). AFM images showed that the film consisted of crystallites in the shape of triangular step pyramids with step heights corresponding to single and double Bi layers in the [111] direction. This morphology indicates crystallization from the vapor. For deposition at higher temperatures, diffuse RHEED patterns appeared independentmore » of the deposited thickness. When these films were cooled, clear transmission patterns of crystalline Bi appeared. After cooling to near room temperature, the melting and solidification behaviors of these films were investigated with RHEED. Upon subsequent heating, the topmost layers of the probed Bi crystallites started to lose long-range order at {approx}10-15 K below the Bi bulk melting point, T{sub 0}=544.52 K. When crystallized from the melt, supercooling by {approx}125 K below T{sub 0} was observed. These results indicate that Bi condensed on graphite in the form of supercooled liquid droplets when the graphite temperature was above 419 K (T{sub 0}-125). Below that temperature, Bi condensed in the solid phase. Bi films crystallized by cooling the liquid had crystal morphologies that depended on the degree of liquid supercooling.« less
  • Real-time changes in the composition and structure of bismuth electrodes used for catalytic conversion of CO2 into CO were examined via X-ray absorption spectroscopy (including XANES and EXAFS), electrochemical quartz crystal microbalance (EQCM), and in situ X-ray reflectivity (XR). Measurements were performed with bismuth electrodes immersed in acetonitrile (MeCN) solutions containing a 1-butyl-3-methylimidazolium ([BMIM]+) ionic liquid promoter or electrochemically inactive tetrabutylammonium supporting electrolytes (TBAPF6 and TBAOTf). Altogether, these measurements show that bismuth electrodes are originally a mixture of bismuth oxides (including Bi2O3) and metallic bismuth (Bi0) and that the reduction of oxidized bismuth species to Bi0 is fully achieved undermore » potentials at which CO2 activation takes place. Furthermore, EQCM measurements conducted during cyclic voltammetry revealed that a bismuth-coated quartz crystal exhibits significant shifts in resistance (ΔR) prior to the onset of CO2 reduction near -1.75 V vs Ag/AgCl and pronounced hysteresis in frequency (Δf) and ΔR, which suggests significant changes in roughness or viscosity at the Bi/[BMIM]+ solution interface. In situ XR performed on rhombohedral Bi (001) oriented films indicates that extensive restructuring of the bismuth film cathodes takes place upon polarization to potentials more negative than -1.6 V vs Ag/AgCl, which is characterized by a decrease of the Bi (001) Bragg peak intensity of ≥50% in [BMIM]OTf solutions in the presence and absence of CO2. Over 90% of the reflectivity is recovered during the anodic half-scan, suggesting that the structural changes are mostly reversible. In contrast, such a phenomenon is not observed for thin Bi (001) oriented films in solutions of tetrabutylammonium salts that do not promote CO2 reduction. Overall, these results highlight that Bi electrodes undergo significant potential-dependent chemical and structural transformations in the presence of [BMIM]+-based electrolytes, including the reduction of bismuth oxide to bismuth metal and changes in roughness and near-surface viscosity.« less
  • Real-time changes in the composition and structure of bismuth electrodes used for catalytic conversion of CO 2 into CO were examined via X-ray absorption spectroscopy (including XANES and EXAFS), electrochemical quartz crystal microbalance (EQCM) and in situ X-ray reflectivity (XR). Measurements were performed with bismuth electrodes immersed in acetonitrile (MeCN) solutions containing a 1-butyl-3-methylimidazolium ([BMIM] +) ionic liquid promoter or electrochemically inactive tetrabutylammonium supporting electrolytes (TBAPF 6 or TBAOTf). Altogether, these measurements show that bismuth electrodes are originally a mixture of bismuth oxides (including Bi 2O 3) and metallic bismuth (Bi 0), and that the reduction of oxidized bismuth speciesmore » to Bi 0 is fully achieved under potentials at which CO 2 activation takes place. Furthermore, EQCM measurements conducted during cyclic voltammetry revealed that a bismuth-coated quartz crystal exhibits significant shifts in resistance (ΔR) prior to the onset of CO 2 reduction near -1.75 V vs. Ag/AgCl and pronounced hysteresis in frequency (Δf) and ΔR, which suggests significant changes in roughness or viscosity at the Bi/[BMIM] + solution interface. In situ XR performed on rhombohedral Bi (001) oriented films indicates extensive restructuring of the bismuth film cathodes takes place upon polarization to potentials more negative than -1.6 V vs. Ag/AgCl, which is characterized by a decrease of the Bi (001) Bragg peak intensity of ≥50% in [BMIM]OTf solutions in the presence and absence of CO 2. Over 90% of the reflectivity is recovered during the anodic half-scan, suggesting that the structural changes are mostly reversible. By contrast, such a phenomenon is not observed for thin Bi (001) oriented films in solutions of tetrabutylammonium salts that do not promote CO 2 reduction. In conclusion, these results highlight that Bi electrodes undergo significant potential-dependent chemical and structural transformations in the presence of [BMIM] + based electrolytes, including the reduction of bismuth oxide to bismuth metal, changes in roughness and near-surface viscosity.« less
    Cited by 1
  • An attempt is made to systematize the data on the relaxation characteristics of liquid alkali metals (Li, Na, and K), which were investigated based on neutron-scattering data with the application of the two-time memory function formalism.
  • Structure factor S(q) and thermodynamic properties like entropy (S), isothermal compressibility (χ{sub T}), specific heat (C{sub V}) have been calculated for liquid 3d (Ti, V, Cr and Mn), 4d (Pd, Zr) and 5d (Pt) transition metals. In this work, we have used newly constructed Bretonnet-Silbert potential to describe electron-ion and ion-ion interaction using different reference systems. It is observed that our results are found to be in good agreement with experimental data as well as with other theoretical results.