skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparative Study on Neutronics Characteristics of 1000 MWth Metal Fuel Sodium-cooled Fast Reactor

Authors:
; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy
OSTI Identifier:
1351968
DOE Contract Number:
AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: 2015 American Nuclear Society Annual Meeting , 06/07/15 - 06/11/15, San Antonio, TX, US
Country of Publication:
United States
Language:
English

Citation Formats

Stauff, Nicolas E., Uematsu, M M, and Kim, Taek K. Comparative Study on Neutronics Characteristics of 1000 MWth Metal Fuel Sodium-cooled Fast Reactor. United States: N. p., 2015. Web.
Stauff, Nicolas E., Uematsu, M M, & Kim, Taek K. Comparative Study on Neutronics Characteristics of 1000 MWth Metal Fuel Sodium-cooled Fast Reactor. United States.
Stauff, Nicolas E., Uematsu, M M, and Kim, Taek K. Thu . "Comparative Study on Neutronics Characteristics of 1000 MWth Metal Fuel Sodium-cooled Fast Reactor". United States. doi:.
@article{osti_1351968,
title = {Comparative Study on Neutronics Characteristics of 1000 MWth Metal Fuel Sodium-cooled Fast Reactor},
author = {Stauff, Nicolas E. and Uematsu, M M and Kim, Taek K.},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jan 01 00:00:00 EST 2015},
month = {Thu Jan 01 00:00:00 EST 2015}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions show a good agreement with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on themore » sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic approaches were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. From the detailed analysis of methodologies, it was found that the good agreement in multiplication factor from the deterministic calculations comes from the cancellation of the differences on the methodology (0.4%) and nuclear data (0.6%). The different treatment in reflector cross section generation was estimated as the major cause of the discrepancy between the multiplication factors by the JAEA and ANL deterministic methodologies. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology. Furthermore, the differences on the inelastic scattering cross sections of U-238, ν values and fission cross sections of Pu-239 and µ-average of Na-23 are the major contributors to the difference on the multiplication factors.« less
  • Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of thismore » project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)« less
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less