skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

Abstract

Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI 3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QD ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm 2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.

Authors:
 [1];  [2];  [3];  [4];  [2]; ORCiD logo [1]
  1. Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Nano-Mechanical Systems Research Division; Korea Univ. of Science and Technology (UST) Daejeon (Korea, Republic of)
  2. Korea Univ., Seoul (Korea, Republic of). School of Mechanical Engineering
  3. Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Korea Institute for Advancement of Technology (KIAT)
OSTI Identifier:
1351938
Report Number(s):
NREL/JA-5900-68321
Journal ID: ISSN 2045-2322
Grant/Contract Number:
AC36-08GO28308; NRF-2016R1A2B3014182
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; quantum dots; solar cells; deposition

Citation Formats

Choi, Hyekyoung, Lee, Jong-Gun, Mai, Xuan Dung, Beard, Matthew C., Yoon, Sam S., and Jeong, Sohee. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells. United States: N. p., 2017. Web. doi:10.1038/s41598-017-00669-9.
Choi, Hyekyoung, Lee, Jong-Gun, Mai, Xuan Dung, Beard, Matthew C., Yoon, Sam S., & Jeong, Sohee. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells. United States. doi:10.1038/s41598-017-00669-9.
Choi, Hyekyoung, Lee, Jong-Gun, Mai, Xuan Dung, Beard, Matthew C., Yoon, Sam S., and Jeong, Sohee. Tue . "Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells". United States. doi:10.1038/s41598-017-00669-9. https://www.osti.gov/servlets/purl/1351938.
@article{osti_1351938,
title = {Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells},
author = {Choi, Hyekyoung and Lee, Jong-Gun and Mai, Xuan Dung and Beard, Matthew C. and Yoon, Sam S. and Jeong, Sohee},
abstractNote = {Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QD ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.},
doi = {10.1038/s41598-017-00669-9},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {Tue Apr 04 00:00:00 EDT 2017},
month = {Tue Apr 04 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
  • Colloidal quantum dots (CQDs) have received recent attention for low cost, solution processable, high efficiency solid-state photovoltaic devices due to the possibility of tailoring their optoelectronic properties by tuning size, composition, and surface chemistry. However, the device performance is limited by the diffusion length of charge carriers due to recombination. In this work, we show that band engineering of PbS QDs is achievable by changing the dipole moment of the passivating ligand molecules surrounding the QD. The valence band maximum and conduction band minimum of PbS QDs passivated with three different thiophenol ligands (4-nitrothiophenol, 4-fluorothiophenol, and 4-methylthiophenol) are determined bymore » UV–visible absorption spectroscopy and photoelectron spectroscopy in air (PESA), and the experimental results are compared with DFT calculations. These band-engineered QDs have been used to fabricate heterojunction solar cells in both unidirectional and bidirectional configurations. The results show that proper band alignment can improve the directionality of charge carrier collection to benefit the photovoltaic performance.« less
  • Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.