skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

Abstract

Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg$^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\mathcal S / \mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\Omega_{\rm m}$$ and $$\sigma_8$$, fixing $w = -1$, $$\Omega_{\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\sigma_{8}(\Omega_{\rm m}/0.3)^{0.6}=0.77 \pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\mathcal S / \mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1351749
Report Number(s):
FERMILAB-PUB-15-566-AE; arXiv:1603.05040; BNL-113770-2017-JA
Journal ID: ISSN 0035-8711; 1428639
Grant/Contract Number:
AC02-07CH11359; SC0012704; AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 463; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: weak; methods: data analysis; methods: statistical; cosmological parameter; cosmology: observations; dark matter

Citation Formats

Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Refregier, A., Marian, L., Dietrich, J. P., Suchyta, E., Aleksić, J., Bacon, D., Becker, M. R., Bonnett, C., Bridle, S. L., Chang, C., Eifler, T. F., Hartley, W. G., Huff, E. M., Krause, E., MacCrann, N., Melchior, P., Nicola, A., Samuroff, S., Sheldon, E., Troxel, M. A., Weller, J., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., and Zhang, Y. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. United States: N. p., 2016. Web. doi:10.1093/mnras/stw2070.
Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Refregier, A., Marian, L., Dietrich, J. P., Suchyta, E., Aleksić, J., Bacon, D., Becker, M. R., Bonnett, C., Bridle, S. L., Chang, C., Eifler, T. F., Hartley, W. G., Huff, E. M., Krause, E., MacCrann, N., Melchior, P., Nicola, A., Samuroff, S., Sheldon, E., Troxel, M. A., Weller, J., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., & Zhang, Y. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. United States. doi:10.1093/mnras/stw2070.
Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Refregier, A., Marian, L., Dietrich, J. P., Suchyta, E., Aleksić, J., Bacon, D., Becker, M. R., Bonnett, C., Bridle, S. L., Chang, C., Eifler, T. F., Hartley, W. G., Huff, E. M., Krause, E., MacCrann, N., Melchior, P., Nicola, A., Samuroff, S., Sheldon, E., Troxel, M. A., Weller, J., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., and Zhang, Y. 2016. "Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data". United States. doi:10.1093/mnras/stw2070. https://www.osti.gov/servlets/purl/1351749.
@article{osti_1351749,
title = {Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data},
author = {Kacprzak, T. and Kirk, D. and Friedrich, O. and Amara, A. and Refregier, A. and Marian, L. and Dietrich, J. P. and Suchyta, E. and Aleksić, J. and Bacon, D. and Becker, M. R. and Bonnett, C. and Bridle, S. L. and Chang, C. and Eifler, T. F. and Hartley, W. G. and Huff, E. M. and Krause, E. and MacCrann, N. and Melchior, P. and Nicola, A. and Samuroff, S. and Sheldon, E. and Troxel, M. A. and Weller, J. and Zuntz, J. and Abbott, T. M. C. and Abdalla, F. B. and Armstrong, R. and Benoit-Lévy, A. and Bernstein, G. M. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Crocce, M. and D'Andrea, C. B. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Evrard, A. E. and Neto, A. Fausti and Flaugher, B. and Fosalba, P. and Frieman, J. and Gerdes, D. W. and Goldstein, D. A. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and Honscheid, K. and Jain, B. and James, D. J. and Jarvis, M. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lima, M. and March, M. and Marshall, J. L. and Martini, P. and Miller, C. J. and Miquel, R. and Mohr, J. J. and Nichol, R. C. and Nord, B. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Vikram, V. and Walker, A. R. and Zhang, Y.},
abstractNote = {Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg$^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $0<\mathcal S / \mathcal N<4$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $\Omega_{\rm m}$ and $\sigma_8$, fixing $w = -1$, $\Omega_{\rm b} = 0.04$, $h = 0.7$ and $n_s=1$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $\sigma_{8}(\Omega_{\rm m}/0.3)^{0.6}=0.77 \pm 0.07$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $\mathcal S / \mathcal N>4$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.},
doi = {10.1093/mnras/stw2070},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 463,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5works
Citation information provided by
Web of Science

Save / Share:
  • Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\mathcal S / \mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\Omega_{\rm m}$$ and $$\sigma_8$$, fixing $w = -1$, $$\Omega_{\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\sigma_{8}(\Omega_{\rm m}/0.3)^{0.6}=0.77 \pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\mathcal S / \mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less
  • Here, we present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ 8m/0.3) 0.5 = 0.81 ± 0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20%more » of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ 8m/0.3) 0.5 is present regardless of the value of w.« less
  • We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ 8(m=0.3) 0.5 = 0:81 ± 0:06 (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. Furthermore, we examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% ofmore » our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data. Our results are consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ 8m=0.3) 0.5 is present regardless of the value of w.« less
  • Cited by 15