skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intelligent Facades for High Performance Green Buildings. Final Technical Report

Abstract

Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification,more » domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets.« less

Authors:
ORCiD logo [1]
  1. Rensselaer Polytechnic Inst., Troy, NY (United States)
Publication Date:
Research Org.:
Rensselaer Polytechnic Inst., Troy, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1351620
Report Number(s):
DE-EE0002285(J12155)
J12155
DOE Contract Number:  
EE0002285
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Building Integrated Solar Energy; Intelligent Dynamic Facade

Citation Formats

Dyson, Anna. Intelligent Facades for High Performance Green Buildings. Final Technical Report. United States: N. p., 2017. Web. doi:10.2172/1351620.
Dyson, Anna. Intelligent Facades for High Performance Green Buildings. Final Technical Report. United States. doi:10.2172/1351620.
Dyson, Anna. Wed . "Intelligent Facades for High Performance Green Buildings. Final Technical Report". United States. doi:10.2172/1351620. https://www.osti.gov/servlets/purl/1351620.
@article{osti_1351620,
title = {Intelligent Facades for High Performance Green Buildings. Final Technical Report},
author = {Dyson, Anna},
abstractNote = {Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets.},
doi = {10.2172/1351620},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Technical Report:

Save / Share: