skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies

Abstract

Here, kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst.

Authors:
 [1]
  1. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1351531
Report Number(s):
LBNL-1007113
ir:1007113
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kennedy, Griffin John. Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies. United States: N. p., 2017. Web. doi:10.2172/1351531.
Kennedy, Griffin John. Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies. United States. doi:10.2172/1351531.
Kennedy, Griffin John. Fri . "Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies". United States. doi:10.2172/1351531.
@article{osti_1351531,
title = {Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies},
author = {Kennedy, Griffin John},
abstractNote = {Here, kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst.},
doi = {10.2172/1351531},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Apr 14 00:00:00 EDT 2017},
month = {Fri Apr 14 00:00:00 EDT 2017}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures.more » It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the α,β-unsaturated aldehydes acrolein, crotonaldehyde, and prenal were investigated over Pt(111) and Pt(100). The selectivity for the hydrogenation of the C=C bond was found to depend on the number of methyl groups added to the bond. The adsorption modes of the three aldehydes were determined. The hydrogenation of crotonaldehyde was found to be nearly structure insensitive as the TOF and selectivity were very close to the same over Pt(111) and Pt(100). SFG-VS indicated identical surface intermediates over the two crystal faces during crotonaldehyde hydrogenation.« less
  • High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N 2, H 2, O 2 andmore » NH 3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH 2 (~3325 cm -1) and NH (~3235 cm -1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.« less
  • L/sub III/ absorption measurements on a number of Ce-based systems together with their La and/or Pr isomorphs, show that the double peaked Ce-edge is not caused by final-state shakeup processes. Shakedown satellites were identified in the absorption edges of LaNi/sub 5/ and LaPd/sub 3/ by comparing to isomorphs of heavier rare earths. The observed smallness of final-state effects implies that the method of L/sub III/ absorption is both a convenient and reliable method for measuring the mixed-valent quotient. XPS and L/sub III/ absorption measurements were performed in a system where the electronic bandstructure can be varied continuously; namely Ce(Pd/sub 1-x/more » T/sub x/)/sub 3/ where T = Rh or Ag. The shakedown intensities in the Ce 3d core levels were correlated with the mixed-valent behavior in this system. The two peaks in the 4f-derived photoemission in Ce-based systems have been a major puzzle in the understanding of these mixed valent effects. Several theories have tried to explain this phenomenon. Resonant valence-band photoelectron measurements were performed on the systems REAl/sub 2/, RERu/sub 2/ and REPd/sub 3/ (RE = La, Ce, Pr, and Nd). One observes the biomodal 4f spectrum in PrAl/sub 2/, PrPd/sub 3/, and NdPd/sub 3/, as well as in the Ce-isomorphs.« less
  • In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates,more » it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-σ bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as π-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can give much insight into how the structure of a single crystal surface affects the chemistry of a catalytic reaction by detecting surface species under reaction conditions.« less
  • High pressure high temperature CO adsorption and coadsorption with ethylene and propylene on Pt(111) was monitored in situ with infrared-visible sum frequency generation (SFG). At high pressures and high temperatures, CO dissociates on a Pt(111) surface to form carbon. At 400 torr CO pressure and 673K, CO modifies the Pt(111) surface through a carbonyl intermediate, and dissociates to leave carbon on the surface. SFG was used to follow the CO peak evolution from monolayer adsorption in ultra high vacuum (UHV) to 400 torr CO pressure. At this high pressure, a temperature dependence study from room temperature to 823K was carriedmore » out. Auger electron spectroscopy was used to identify carbon on the surface CO coadsorption with ethylene and CO coadsorption with propylene studies were carried out with 2-IR 1-visible SFG. With this setup, two spectral ranges covering the C-H stretch range and the CO stretch range can be monitored simultaneously. The coadsorption study with ethylene reveals that after 5L ethylene exposure on a Pt(111) surface to form ethylidyne , CO at high pressures cannot completely displace the ethylidyne from the surface. Instead, CO first adsorbs on defect sites at low pressures and then competes with ethylidyne for terrace sites at high pressures. Propylene coadsorption with CO at similar conditions shows that propylidyne undergoes conformation changes with increased CO pressure and at 1 torr, is absent from the Pt(111) surface. Experiments on CO poisoning of ethylene hydrogenation was carried by 2-IR 1-visible SFG. At 1 torr CO,10 torr ethylene and 100 torr hydrogen, CO was found to block active sites necessary for ethylene hydrogenation, Above 425K, CO desorbs from the surface to allow ethylene hydrogenation to occur. The gas phase species were monitored by gas chromatography.« less