skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF)
OSTI Identifier:
1351372
Resource Type:
Journal Article
Resource Relation:
Journal Name: Protein Engineering, Design and Selection; Journal Volume: 30; Journal Issue: 3
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Zahniser, Megan P. D., Prasad, Shreenath, Kneen, Malea M., Kreinbring, Cheryl A., Petsko, Gregory A., Ringe, Dagmar, and McLeish, Michael J. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. United States: N. p., 2017. Web. doi:10.1093/protein/gzx015.
Zahniser, Megan P. D., Prasad, Shreenath, Kneen, Malea M., Kreinbring, Cheryl A., Petsko, Gregory A., Ringe, Dagmar, & McLeish, Michael J. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. United States. doi:10.1093/protein/gzx015.
Zahniser, Megan P. D., Prasad, Shreenath, Kneen, Malea M., Kreinbring, Cheryl A., Petsko, Gregory A., Ringe, Dagmar, and McLeish, Michael J. Wed . "Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily". United States. doi:10.1093/protein/gzx015.
@article{osti_1351372,
title = {Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily},
author = {Zahniser, Megan P. D. and Prasad, Shreenath and Kneen, Malea M. and Kreinbring, Cheryl A. and Petsko, Gregory A. and Ringe, Dagmar and McLeish, Michael J.},
abstractNote = {},
doi = {10.1093/protein/gzx015},
journal = {Protein Engineering, Design and Selection},
number = 3,
volume = 30,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}
  • Within recent years it has become apparent that protein glycosylation is not limited to eukaryotes. Indeed, in Campylobacter jejuni, a Gram-negative bacterium, more than 60 of its proteins are known to be glycosylated. One of the sugars found in such glycosylated proteins is 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, hereafter referred to as QuiNAc4NAc. The pathway for its biosynthesis, initiating with UDP-GlcNAc, requires three enzymes referred to as PglF, PglE, and PlgD. The focus of this investigation is on PglF, an NAD+-dependent sugar 4,6-dehydratase known to belong to the short chain dehydrogenase/reductase (SDR) superfamily. Specifically, PglF catalyzes the first step in the pathway, namely, themore » dehydration of UDP-GlcNAc to UDP-2-acetamido-2,6-dideoxy-α-d-xylo-hexos-4-ulose. Most members of the SDR superfamily contain a characteristic signature sequence of YXXXK where the conserved tyrosine functions as a catalytic acid or a base. Strikingly, in PglF, this residue is a methionine. Here we describe a detailed structural and functional investigation of PglF from C. jejuni. For this investigation five X-ray structures were determined to resolutions of 2.0 Å or better. In addition, kinetic analyses of the wild-type and site-directed variants were performed. On the basis of the data reported herein, a new catalytic mechanism for a SDR superfamily member is proposed that does not require the typically conserved tyrosine residue.« less
  • In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobicmore » conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The othersingle bondnot described before for any ALDH but most likely present in most of themsingle bondis located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K+ ions on the activity and stability of PaBADH.« less
  • Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family R-oxyanion carboxylate intermediate/transition state) and Mg{sup 2+} was determined at 1.9 {angstrom} resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an {alpha}/{beta} barrel fold and two subunits swapping their barrel's C-terminal {alpha}-helices. Mg2+more » and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The N{sup {epsilon}} of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into {alpha}-oxocarboxylate-containing compounds was confirmed by {sup 1}H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an {alpha}-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (k{sub cat}) = 7500 s{sup -1} and K{sub m} = 2.2 mM) and 3-methyloxaloacetate (k{sub cat}) = 250 s{sup -1} and K{sub m} = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.« less