skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows

Abstract

Here we present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection in the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Finally, marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).

Authors:
ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; National Aeronautic and Space Administration (NASA)
OSTI Identifier:
1351224
Report Number(s):
LA-UR-16-23641
Journal ID: ISSN 1538-4357; TRN: US1700681
Grant/Contract Number:
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 837; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy and Astrophysics

Citation Formats

Panaitescu, Alin-Daniel. Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows. United States: N. p., 2017. Web. doi:10.3847/1538-4357/837/1/13.
Panaitescu, Alin-Daniel. Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows. United States. doi:10.3847/1538-4357/837/1/13.
Panaitescu, Alin-Daniel. Mon . "Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows". United States. doi:10.3847/1538-4357/837/1/13. https://www.osti.gov/servlets/purl/1351224.
@article{osti_1351224,
title = {Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows},
author = {Panaitescu, Alin-Daniel},
abstractNote = {Here we present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection in the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Finally, marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).},
doi = {10.3847/1538-4357/837/1/13},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 837,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (more » $${P}_{\mathrm{spin}}$$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $$1.3\times {10}^{-12}$$ erg cm -2 s -1 in the 100 MeV–300 GeV energy range, providing constraints on models.« less
  • In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ~20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi andmore » processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. Here, we summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.« less
  • We present a systematic analysis of the spectral and temporal properties of 17 gamma-ray bursts (GRBs) codetected by the Gamma-ray Burst Monitor (GBM) and the Large Area Telescope (LAT) onboard the Fermi satellite in 2010 May. We performed a time-resolved spectral analysis of all the bursts, with the finest temporal resolution allowed by statistics, to reduce temporal smearing of different spectral components. We found that the time-resolved spectra of 14 out of 17 GRBs are best modeled with the classical 'Band' function over the entire Fermi spectral range, which may suggest a common origin for emissions detected by the LATmore » and GBM. GRB 090902B and GRB 090510 require the superposition of an MeV component and an extra power-law component, with the former having a sharp cutoff above E{sub p} . For GRB 090902B, this MeV component becomes progressively narrower as the time bin gets smaller, and can be fit with a Planck function as the time bin becomes small enough. In general, we speculate that, phenomenologically, there may be three elemental spectral components that shape the time-resolved GRB spectra: a Band-function component (e.g., in GRB 080916C) that extends over a wide energy range and does not narrow with decreasing time bins, which may be of non-thermal origin; a quasi-thermal component (e.g., in GRB 090902B), with spectra progressively narrowing with reducing time bins; and another non-thermal power-law component extending to high energies. The spectra of different bursts may be decomposed into one or more of these elemental components. We compare this sample with the Burst and Transient Source Experiment sample and investigate some correlations among spectral parameters. We discuss the physical implications of the data analysis results for GRB prompt emission, including jet composition (matter-dominated versus Poynting-flux-dominated outflow), emission sites (internal shock, external shock, or photosphere), as well as radiation mechanisms (synchrotron, synchrotron self-Compton, or thermal Compton upscattering).« less
  • GRB 090926A was detected by both the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. Swift follow-up observations began {approx}13 hr after the initial trigger. The optical afterglow was detected for nearly 23 days post trigger, placing it in the long-lived category. The afterglow is of particular interest due to its brightness at late times, as well as the presence of optical flares at T0+10{sup 5} s and later, which may indicate late-time central engine activity. The LAT has detected a total of 16 gamma-ray bursts; nine of these bursts, including GRBmore » 090926A, also have been observed by Swift. Of the nine Swift-observed LAT bursts, six were detected by UVOT, with five of the bursts having bright, long-lived optical afterglows. In comparison, Swift has been operating for five years and has detected nearly 500 bursts, but has only seen {approx}30% of bursts with optical afterglows that live longer than 10{sup 5} s. We have calculated the predicted gamma-ray fluence, as would have been seen by the Burst Alert Telescope (BAT) on board Swift, of the LAT bursts to determine whether this high percentage of long-lived optical afterglows is unique, when compared to BAT-triggered bursts. We find that, with the exception of the short burst GRB 090510A, the predicted BAT fluences indicate that the LAT bursts are more energetic than 88% of all Swift bursts and also have brighter than average X-ray and optical afterglows.« less