skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Endomembrane Cation Transporters and Membrane Trafficking

Abstract

Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that might influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H + exchangers (CHX) and K + efflux antiporters (KEA) that are prevalent in higher plants, butmore » rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H + exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting fertilization. Based on localization and mutant analyses, we conclude that CHXs modulate the ion balance, pH or both in micro-regions of endoplasmic reticulum, endosomes and prevacuolar compartment (PVC), and so influence membrane trafficking and signaling resulting in proper osmoregulation in guard cells and seed formation. We also demonstrated for the first time that AtKEA2 associates with chloroplasts, especially at the two poles of developing plastids. These results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation. The first 3-D structure model of AtCHX was generated, and architecture-directed mutagenesis identified critical residues of the transport core giving insights to the transport mode of this family. Thus we have revealed for the first time crucial roles of an unknown K +/H + transport family on plant growth (KEA), gas exchange, pollen cell wall, and different phases of reproduction (CHXs). The dynamic endomembrane of plant cells is integral to cytokinesis, cell expansion, defense, and cell wall formation, thus these studies are directly relevant to the mission of the Department of Energy and to a better understanding of determinants for enhancing plant biomass and plant tolerance to abiotic stress.« less

Authors:
ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Cell Biology & Molecular Genetics
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1351059
Report Number(s):
DOE-UMd-ER15883
DOE Contract Number:
FG02-07ER15883
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 54 ENVIRONMENTAL SCIENCES; Plant growth; K+ transport; pH homeostasis; cell wall; reproduction; environmental stress

Citation Formats

Sze, Heven. Endomembrane Cation Transporters and Membrane Trafficking. United States: N. p., 2017. Web. doi:10.2172/1351059.
Sze, Heven. Endomembrane Cation Transporters and Membrane Trafficking. United States. doi:10.2172/1351059.
Sze, Heven. Sat . "Endomembrane Cation Transporters and Membrane Trafficking". United States. doi:10.2172/1351059. https://www.osti.gov/servlets/purl/1351059.
@article{osti_1351059,
title = {Endomembrane Cation Transporters and Membrane Trafficking},
author = {Sze, Heven},
abstractNote = {Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that might influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H+ exchangers (CHX) and K+ efflux antiporters (KEA) that are prevalent in higher plants, but rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H+ exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting fertilization. Based on localization and mutant analyses, we conclude that CHXs modulate the ion balance, pH or both in micro-regions of endoplasmic reticulum, endosomes and prevacuolar compartment (PVC), and so influence membrane trafficking and signaling resulting in proper osmoregulation in guard cells and seed formation. We also demonstrated for the first time that AtKEA2 associates with chloroplasts, especially at the two poles of developing plastids. These results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation. The first 3-D structure model of AtCHX was generated, and architecture-directed mutagenesis identified critical residues of the transport core giving insights to the transport mode of this family. Thus we have revealed for the first time crucial roles of an unknown K+/H+ transport family on plant growth (KEA), gas exchange, pollen cell wall, and different phases of reproduction (CHXs). The dynamic endomembrane of plant cells is integral to cytokinesis, cell expansion, defense, and cell wall formation, thus these studies are directly relevant to the mission of the Department of Energy and to a better understanding of determinants for enhancing plant biomass and plant tolerance to abiotic stress.},
doi = {10.2172/1351059},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • This project has been directed towards an understanding of the cellular and molecular mechanisms by which higher plants control the composition of the plasma membrane, through analysis of the biosynthesis, modification and targeting of plasma membrane proteins and glycoproteins. We have undertaken an identification of molecular markers both for the plasma membrane and for the biosynthetic processes, and the development of techniques for the isolation of conditional-lethal mutants defective at defined stages within the endomembrane-secretory pathway responsible for the biosynthesis, modification and targeting of plasma membrane proteins and glycoproteins. For the identification of molecular markers for the plasma membrane, monoclonalmore » antibodies directed against epitopes present at the plant cell surface have been developed. Novel molecular markers for the plant plasma membrane and for the endomembrane-secretory pathway have been sought. Methods for the analysis of beta-glucuronidase in higher plants have been developed. These technologies have involved the use of flow cytometry and fluorescence-activated cell sorting. In addition, we have been investigating the feasibility of expression of animal plasma membrane marker proteins in plants, specifically the VSV G-protein. 5 refs., 6 figs.« less
  • These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)
  • These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)
  • The directive defines parties which are liable for response costs under section 107(A)(4) of CERCLA, including persons who transport hazardous substances to disposal or treatment facilities.
  • The report to Congress summarizes the status of completed settlements and ongoing negotiations with municipal generators and transporters of municipal solid waste and municipal sewage sludge under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 since 1991.