skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast instability caused by electron cloud in combined function magnets

Abstract

One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. Here, we studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We also found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. Furthermore, in a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutionsmore » and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.« less

Authors:
 [1];  [2];  [2];  [2];  [2]
  1. Univ. of Chicago, IL (United States)
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1351037
Alternate Identifier(s):
OSTI ID: 1342212
Report Number(s):
arXiv:1612.03967; FERMILAB-PUB-16-612-AD
Journal ID: ISSN 2469-9888; PRABCJ; 1503212; TRN: US1700541
Grant/Contract Number:
AC02-07CH11359
Resource Type:
Journal Article: Published Article
Journal Name:
Physical Review Accelerators and Beams (Online)
Additional Journal Information:
Journal Name: Physical Review Accelerators and Beams (Online); Journal Volume: 20; Journal Issue: 4; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Antipov, S. A., Adamson, P., Burov, A., Nagaitsev, S., and Yang, M. -J. Fast instability caused by electron cloud in combined function magnets. United States: N. p., 2017. Web. doi:10.1103/PhysRevAccelBeams.20.044401.
Antipov, S. A., Adamson, P., Burov, A., Nagaitsev, S., & Yang, M. -J. Fast instability caused by electron cloud in combined function magnets. United States. doi:10.1103/PhysRevAccelBeams.20.044401.
Antipov, S. A., Adamson, P., Burov, A., Nagaitsev, S., and Yang, M. -J. Mon . "Fast instability caused by electron cloud in combined function magnets". United States. doi:10.1103/PhysRevAccelBeams.20.044401.
@article{osti_1351037,
title = {Fast instability caused by electron cloud in combined function magnets},
author = {Antipov, S. A. and Adamson, P. and Burov, A. and Nagaitsev, S. and Yang, M. -J.},
abstractNote = {One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. Here, we studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We also found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. Furthermore, in a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.},
doi = {10.1103/PhysRevAccelBeams.20.044401},
journal = {Physical Review Accelerators and Beams (Online)},
number = 4,
volume = 20,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1103/PhysRevAccelBeams.20.044401

Save / Share:
  • One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. Here, we studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We also found that beam motion can be stabilized by a clearingmore » bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. Furthermore, in a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.« less
  • Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10more » $$^{-2}$$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.« less
  • Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that the field of combined function magnets traps the electron cloud, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud is located at the beam center and up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electronsmore » significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multiturn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a clearing bunch of 1010 p at any position in the ring.« less
  • The 12 GeV upgrade at Jefferson Lab has identified two new large spectrometers as Physics detectors for the project. The first is a 7.5 Gev/c 35 m-sr. spectrometer that requires a pair of identical Combined Function Superconducting Magnets (CFSM) that can simultaneously produce 1.5 T dipole fields and 4.5 T/m quadrupole fields inside a warm bore of 120 cm. The second is an 11 GeV/c 2 m-sr. spectrometer that requires a CFSM that simultaneously produces a dipole field of 4.0 T and a quadruple field of 3.0 T/m in a 60 cm warm bore. Magnetic designs using TOSCA 3D havemore » been performed to realize the magnetic requirements, provide 3d fields for optics analysis and produce field and force information for the engineering feasibility of the magnets. A two-sector cos(theta)/cos(2theta) design with a low nominal current density, warm bore and warm iron design has been selected and analyzed. These low current densities are consistent with the limits for a cryostable winding. The current paper will summarize the requirement definition of these two magnets. The conceptual design arrived at during the feasibility study involving the choice of conductors, thermal and structural analyses will be presented. A discussion of the manufacturing approach and challenges will be provided.« less
  • Cited by 5