skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low Cost High Performance Nanostructured Spectrally Selective Coating

Abstract

Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.

Authors:
 [1]
  1. Univ. of California, San Diego, CA (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1350999
Report Number(s):
DOE-UCSD-0005802
DOE Contract Number:
EE0005802
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Jin, Sungho. Low Cost High Performance Nanostructured Spectrally Selective Coating. United States: N. p., 2017. Web. doi:10.2172/1350999.
Jin, Sungho. Low Cost High Performance Nanostructured Spectrally Selective Coating. United States. doi:10.2172/1350999.
Jin, Sungho. Wed . "Low Cost High Performance Nanostructured Spectrally Selective Coating". United States. doi:10.2172/1350999. https://www.osti.gov/servlets/purl/1350999.
@article{osti_1350999,
title = {Low Cost High Performance Nanostructured Spectrally Selective Coating},
author = {Jin, Sungho},
abstractNote = {Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.},
doi = {10.2172/1350999},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 05 00:00:00 EDT 2017},
month = {Wed Apr 05 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The University of California San Diego is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.
  • The goal of the project was to develop a suite of materials coupled with processing technologies aimed at the fabrication of entirely solution-processed photovoltaic devices. Most of the emphasis in terms of innovation was placed on the transparent electrodes, widely considered a critical component of the solar cell in terms of cost and performance. The active layer technologies proposed hinged on the fabrication and deposition of semiconducting nanoparticles. The electrode development hit all the milestones proposed: by the end of the grant we were able to fabricate transparent and flexible electrodes with transmission over the solar spectrum higher than 85%more » and sheet resistance lower than 10 Ω/square. To the best of our knowledge, this is the highest-performance transparent electrode reported. Furthermore these electrodes were deposited by spray-coating, a large-area, low-cost deposition techniques. Hence the first main goal of the proposal, which was to find an alternative to ITO was successfully achieved. Organic photovoltaic devices were made with these electrodes having a performance indistinguishable from that of devices made on ITO (the industry standard), e.g. ~5% for P3HT:PCBM cells. We also innovated in the active-area part of the device where semiconducting inks were designed rather than nanoparticle suspensions. The process we selected, called air-stable ink rolling (AIR) allowed to deposit well-controlled films of ternary and quaternary II-VI semiconductors. Developing a new technology from scratch proved to be more challenging than anticipated and therefore we were not able to demonstrate a fully integrated device using our nanostructured high-performance transparent electrodes as well as AIR active layers. As a result, we did not achieve the second main goal of the proposal, which was to fabricate an entire cell using nanostructured materials. We were able to develop the components separately but did not integrate them in a device.« less
  • Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less