skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alaskan North Slope Oil & Gas Transportation Support

Abstract

North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnelmore » visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations early or risk being caught on ice roads with flooded stream crossings, or unusable sections of ice road due to local melt. These challenges result in higher oil and gas field exploration and operational costs. Much of the scientific understanding to address transportation issues for oil and gas development on the North Slope exists, but has not been placed into a set of tools and data sets useful for industry and management agencies. Optimizing North Slope transportation networks during winter operation seasons is critical in managing increasing resource development and will provide a framework for environmentally-responsive development. Understanding the physical environment (such as snow, water, ice, soils) is necessary to ensure protection of fisheries and other natural resources on the sensitive tundra landscape. Solutions also have to do more than just describe current conditions, they need the ability to forecast short-term conditions. This will allow management agencies to respond to future variability in snow cover, soil temperature, and water availability more effectively. In turn, industry will then have more time to plan the significant mobilization taking place every winter season.« less

Authors:
ORCiD logo [1]
  1. Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)
Publication Date:
Research Org.:
Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
Contributing Org.:
Alaska Dept. of Natural Resources (United States); ConocoPhillips Alaska, Inc. (United States); Bureau of Land Management (United States)
OSTI Identifier:
1350972
Report Number(s):
DE-FE0001240
DOE Contract Number:  
FE0001240
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES; 02 PETROLEUM; Alaska; ice roads; water; water use; transportation; arctic; arctic transportation; tundra travel; NPRA; North Slope; lakes; winter water use, Prudhoe Bay

Citation Formats

Lilly, Michael Russell. Alaskan North Slope Oil & Gas Transportation Support. United States: N. p., 2017. Web. doi:10.2172/1350972.
Lilly, Michael Russell. Alaskan North Slope Oil & Gas Transportation Support. United States. https://doi.org/10.2172/1350972
Lilly, Michael Russell. 2017. "Alaskan North Slope Oil & Gas Transportation Support". United States. https://doi.org/10.2172/1350972. https://www.osti.gov/servlets/purl/1350972.
@article{osti_1350972,
title = {Alaskan North Slope Oil & Gas Transportation Support},
author = {Lilly, Michael Russell},
abstractNote = {North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations early or risk being caught on ice roads with flooded stream crossings, or unusable sections of ice road due to local melt. These challenges result in higher oil and gas field exploration and operational costs. Much of the scientific understanding to address transportation issues for oil and gas development on the North Slope exists, but has not been placed into a set of tools and data sets useful for industry and management agencies. Optimizing North Slope transportation networks during winter operation seasons is critical in managing increasing resource development and will provide a framework for environmentally-responsive development. Understanding the physical environment (such as snow, water, ice, soils) is necessary to ensure protection of fisheries and other natural resources on the sensitive tundra landscape. Solutions also have to do more than just describe current conditions, they need the ability to forecast short-term conditions. This will allow management agencies to respond to future variability in snow cover, soil temperature, and water availability more effectively. In turn, industry will then have more time to plan the significant mobilization taking place every winter season.},
doi = {10.2172/1350972},
url = {https://www.osti.gov/biblio/1350972}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 31 00:00:00 EDT 2017},
month = {Fri Mar 31 00:00:00 EDT 2017}
}