skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

Abstract

Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.

Authors:
; ORCiD logo; ; ; ORCiD logo
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1350946
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 15; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; battery electrolyte; FDTD; gold nanoparticle; monolayer; self-assembly; surface-enhanced Raman spectroscopy

Citation Formats

Yang, Guang, Nanda, Jagjit, Wang, Boya, Chen, Gang, and Hallinan, Daniel T. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. United States: N. p., 2017. Web. doi:10.1021/acsami.7b01121.
Yang, Guang, Nanda, Jagjit, Wang, Boya, Chen, Gang, & Hallinan, Daniel T. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. United States. doi:10.1021/acsami.7b01121.
Yang, Guang, Nanda, Jagjit, Wang, Boya, Chen, Gang, and Hallinan, Daniel T. Tue . "Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy". United States. doi:10.1021/acsami.7b01121. https://www.osti.gov/servlets/purl/1350946.
@article{osti_1350946,
title = {Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy},
author = {Yang, Guang and Nanda, Jagjit and Wang, Boya and Chen, Gang and Hallinan, Daniel T.},
abstractNote = {Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 106 and 108 and give quantitative signal response when analyte concentration is changed.},
doi = {10.1021/acsami.7b01121},
journal = {ACS Applied Materials and Interfaces},
number = 15,
volume = 9,
place = {United States},
year = {Tue Apr 04 00:00:00 EDT 2017},
month = {Tue Apr 04 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5works
Citation information provided by
Web of Science

Save / Share:
  • This paper reports on the characterization and preliminary comparison of gold nanoparticles of differing surface modification and shape when used as extrinsic Raman labels (ERLs) in high-sensitivity heterogeneous immunoassays based on surface enhanced Raman scattering (SERS). ERLs are gold nanoparticles coated with an adlayer of an intrinsically strong Raman scatterer, followed by a coating of a molecular recognition element (e.g., antibody). Three types of ERLs, all with a nominal size of {approx}30 nm, were fabricated by using spherical citrate-capped gold nanoparticles (sp-cit-Au NPs), spherical CTAB-capped gold nanoparticles (sp-CTAB-Au NPs), or cube-like CTAB-capped gold nanoparticles (cu-CTAB-Au NPs) as cores. The performancemore » of these particles was assessed via a sandwich immunoassay for human IgG in phosphate buffered saline. The ERLs fabricated with sp-CTAB-Au NPs as cores proved to be more than 50 times more sensitive than those with sp-cit-Au NPs as cores; the same comparison showed that the ERLs with cu-CTAB-Au NPs as cores were close to 200 times more sensitive. Coupled with small differences in levels of nonspecific adsorption, these sensitivities translated to a limit of detection (LOD) of 94, 2.3, and 0.28 ng/mL, respectively, for the detection of human IgG in the case of sp-cit-Au NPs, sp-CTAB-Au NPs, and cu-CTAB-Au NPs. The LOD of the cu-CTAB-Au NPs is therefore {approx}340 times below that for the sp-cit-Au NPs. Potential applications of these labels to bioassays are briefly discussed.« less
  • We report observations of single molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10-12 M or at single molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking also were observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively highmore » concentrations (>10-8 M thionine), and spectral intensities varied with the size of Au nanoparticles.« less
  • Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. Wemore » investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.« less
  • P-aminothiophenol (PATP) is a well-known molecule for the preparation of self-assembled monolayers on gold via its thiol functional group. After adsorption, it has been demonstrated that this molecule is anchored to gold through its thiol group, and standing nearly upright at the surface with the amino functional group on top. This molecule has been extensively studied by surface enhanced Raman spectroscopy but its exact SERS spectrum remains unclear. Here, we demonstrate that it can be strongly affected by at least two experimental parameters: laser power and layer density. Those features are discussed in terms of a dimerization of the PATPmore » molecules. The free amino group affords the adsorption of other molecules such as C{sub 60}. In this case, a complex multilayer system is formed and the question of its precise characterisation remains a key point. In this article, we demonstrate that surface enhanced Raman spectroscopy combined with x ray photoelectron spectroscopy can bring very important information about the organization of such a self-assembled multilayer on gold. In our study, the strong evolution of Raman modes after C{sub 60} adsorption suggests a change in the organization of aminothiophenol molecules during C{sub 60} adsorption. These changes, also observed when the aminothiophenol layer is annealed in toluene, do not prevent the adsorption of C{sub 60} molecules.« less
  • Colloidal solutions of metal nanoparticles are currently among most studied substrates for sensors based on surface-enhanced Raman scattering (SERS). However, such substrates often suffer from not being cost-effective, reusable, or stable. Here, we develop nanoporous Au as a highly active, tunable, a.ordable, stable, bio-compatible, and reusable SERS substrate. Nanoporous Au is prepared by a facile process of free corrosion of AgAu alloys followed by annealing. Results show that nanofoams with average pore sizes of {approx} 250 nm exhibit the largest SERS signal for 632.8 nm excitation. This is attributed to the electromagnetic SERS enhancement mechanism with additional field localization withinmore » pores.« less