skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sustained Low Temperature NOx Reduction

Abstract

Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiatedmore » the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less

Authors:
Publication Date:
Research Org.:
Cummins inc
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1350595
Report Number(s):
pm068
DOE Contract Number:
EE0006795
Resource Type:
Conference
Resource Relation:
Conference: SAE world Congress
Country of Publication:
United States
Language:
English

Citation Formats

Zha, Yuhui. Sustained Low Temperature NOx Reduction. United States: N. p., 2017. Web.
Zha, Yuhui. Sustained Low Temperature NOx Reduction. United States.
Zha, Yuhui. Wed . "Sustained Low Temperature NOx Reduction". United States. doi:. https://www.osti.gov/servlets/purl/1350595.
@article{osti_1350595,
title = {Sustained Low Temperature NOx Reduction},
author = {Zha, Yuhui},
abstractNote = {Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 05 00:00:00 EDT 2017},
month = {Wed Apr 05 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • PECO Energy Company operates one coal fired boiler at its Cromby Generating Facility. Cromby Unit 1 is a B and W front fired unit rated at 160 MW. The units boiler has been retrofitted with low NOx burners and overfire air ports. Due to NOx allowance pricing, PECO began evaluating options for reducing Cromby's NOx emissions. SNCR was evaluated at the best option for the plant even though the furnace exit temperatures and CO were high at practical injection locations. RJM Corporation, a Fuel Tech NOxOUT{trademark} Implementer, was selected to supply the system because of their extensive experience in solvingmore » combustion problems and applying NOxOUT SNCR systems on utility boilers. In order to reduce emissions during the 1999 NOx season, the deadline for an operational system was set at June 2nd. The project was issued on a fast track schedule starting February 2, 1999. The boiler was started up on June 2 on schedule after a six week maintenance outage. The project's 25% NOx reduction target was achieved after two weeks of combustion optimization. Combustion optimization was followed by NOxOUT A reagent injection system optimization which resulted in a 50% combined NOx reduction. Other benefits included a reduction in CO to less than 100 ppm and a 33% reduction in LOI.« less
  • The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
  • The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content's deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research what might be done to minimize the adverse effects of ash on boiler performance for many years. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effect thesemore » firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS{trademark} yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS{trademark} yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
  • Chemical reduction of NO{sub x} can be accomplished by injection of nitrogen atoms into the diesel engine exhaust stream. The nitrogen atoms can be generated from a separate stream of pure N{sub 2} by means of plasma jets or non-thermal plasma reactors. This paper examines the effect of exhaust temperature on the NO{sub x} reduction efficiency that can be achieved by nitrogen atom injection. It is shown that to achieve a high NO{sub x} reduction efficiency at a reasonable power consumption penalty, the exhaust temperature needs to be 100 C or less.
  • NOx reduction under simulated lean burn conditions was studied using a non-thermal plasma in combination with zeolite and alumina catalysts. The influence of temperature and plasma treatment on the catalytic performance was investigated. Zeolite catalyst B showed high activity in the 150-300 degree Celcius temperature region. Alumina Catalyst D was most active at temperatures higher than 250 degrees Celcius. In addition, the alumina catalyst was effective in oxidation of aldehydes formed during plasma treatment of the reaction mixture. When the reaction was carried out over a catalyst bed consisting of separate layers of the zeolite and alumina catalyst, the catalystmore » temperature range for significant NOx reduction was expanded to 150-500 degrees Celcius.« less