skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries [A new perspective on materials for plasmonics]

Abstract

Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. Furthermore, the analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.

Authors:
 [1];  [2];  [3];  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States); Institute of Electronic Structure and Lasers (IESL), Crete (Greece)
  2. Chalmers Univ., Goteborg (Sweden)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1350056
Report Number(s):
IS-J-8816
Journal ID: ISSN 2195-1071
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Optical Materials
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2195-1071
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Dastmalchi, Babak, Tassin, Philippe, Koschny, Thomas, and Soukoulis, Costas M. A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries [A new perspective on materials for plasmonics]. United States: N. p., 2015. Web. doi:10.1002/adom.201500446.
Dastmalchi, Babak, Tassin, Philippe, Koschny, Thomas, & Soukoulis, Costas M. A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries [A new perspective on materials for plasmonics]. United States. doi:10.1002/adom.201500446.
Dastmalchi, Babak, Tassin, Philippe, Koschny, Thomas, and Soukoulis, Costas M. Mon . "A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries [A new perspective on materials for plasmonics]". United States. doi:10.1002/adom.201500446. https://www.osti.gov/servlets/purl/1350056.
@article{osti_1350056,
title = {A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries [A new perspective on materials for plasmonics]},
author = {Dastmalchi, Babak and Tassin, Philippe and Koschny, Thomas and Soukoulis, Costas M.},
abstractNote = {Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. Furthermore, the analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.},
doi = {10.1002/adom.201500446},
journal = {Advanced Optical Materials},
issn = {2195-1071},
number = 1,
volume = 4,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Über die Ausbreitung der Wellen in der drahtlosen Telegraphie
journal, January 1909


Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection
journal, August 1968

  • Otto, Andreas
  • Zeitschrift für Physik A Hadrons and nuclei, Vol. 216, Issue 4
  • DOI: 10.1007/BF01391532

Excitation by light ofω + andω − surface plasma waves in thin metal layers
journal, June 1969

  • Otto, A.
  • Zeitschrift für Physik A Hadrons and nuclei, Vol. 219, Issue 3
  • DOI: 10.1007/BF01397566

Surface Plasmons in Thin Films
journal, June 1969


Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen
journal, August 1971

  • Kretschmann, Erwin
  • Zeitschrift für Physik A Hadrons and nuclei, Vol. 241, Issue 4
  • DOI: 10.1007/BF01395428

Surface plasmon subwavelength optics
journal, August 2003

  • Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W.
  • Nature, Vol. 424, Issue 6950, p. 824-830
  • DOI: 10.1038/nature01937

Surface plasmon–polariton length scales: a route to sub-wavelength optics
journal, March 2006


Nano-optics of surface plasmon polaritons
journal, March 2005


Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
journal, July 2005

  • Maier, Stefan A.; Atwater, Harry A.
  • Journal of Applied Physics, Vol. 98, Issue 1
  • DOI: 10.1063/1.1951057

Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
journal, January 2006


Plasmonics beyond the diffraction limit
journal, January 2010

  • Gramotnev, Dmitri K.; Bozhevolnyi, Sergey I.
  • Nature Photonics, Vol. 4, Issue 2, p. 83-91
  • DOI: 10.1038/nphoton.2009.282

Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides
journal, September 2004


A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles
journal, September 2002

  • Haes, Amanda J.; Van Duyne, Richard P.
  • Journal of the American Chemical Society, Vol. 124, Issue 35, p. 10596-10604
  • DOI: 10.1021/ja020393x

Nano-optics from sensing to waveguiding
journal, November 2007


Surface plasmon–polariton amplifiers and lasers
journal, December 2011


Nonlinear plasmonics
journal, November 2012


Plasmonic solar cells
journal, January 2008


Integrated optical components utilizing long-range surface plasmon polaritons
journal, January 2005

  • Boltasseva, A.; Nikolajsen, T.; Leosson, K.
  • Journal of Lightwave Technology, Vol. 23, Issue 1
  • DOI: 10.1109/JLT.2004.835749

Plasmonics: the next chip-scale technology
journal, July 2006


Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs
journal, January 2007

  • Conway, Josh A.; Sahni, Subal; Szkopek, Thomas
  • Optics Express, Vol. 15, Issue 8
  • DOI: 10.1364/OE.15.004474

Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators
journal, December 2009

  • Cai, Wenshan; White, Justin S.; Brongersma, Mark L.
  • Nano Letters, Vol. 9, Issue 12
  • DOI: 10.1021/nl902701b

Scaling of losses with size and wavelength in nanoplasmonics and metamaterials
journal, November 2011

  • Khurgin, Jacob B.; Sun, Greg
  • Applied Physics Letters, Vol. 99, Issue 21
  • DOI: 10.1063/1.3664105

Long-range surface plasmon polaritons
journal, January 2009


Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface
journal, December 2004

  • Gramotnev, D. K.; Pile, D. F. P.
  • Applied Physics Letters, Vol. 85, Issue 26
  • DOI: 10.1063/1.1839283

Engineering of low-loss metal for nanoplasmonic and metamaterials applications
journal, October 2009

  • Bobb, D. A.; Zhu, G.; Mayy, M.
  • Applied Physics Letters, Vol. 95, Issue 15
  • DOI: 10.1063/1.3237179

Designing materials for plasmonic systems: the alkali–noble intermetallics
journal, February 2010


Searching for better plasmonic materials
journal, March 2010


Low-Loss Plasmonic Metamaterials
journal, January 2011


Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]
journal, January 2011

  • Naik, Gururaj V.; Kim, Jongbum; Boltasseva, Alexandra
  • Optical Materials Express, Vol. 1, Issue 6
  • DOI: 10.1364/OME.1.001090

A comparative study of semiconductor-based plasmonic metamaterials
journal, April 2011


Plasmonics in graphene at infrared frequencies
journal, December 2009


Transformation Optics Using Graphene
journal, June 2011


Graphene Plasmonics: A Platform for Strong Light–Matter Interactions
journal, August 2011

  • Koppens, Frank H. L.; Chang, Darrick E.; García de Abajo, F. Javier
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201771h

Drude conductivity of Dirac fermions in graphene
journal, April 2011


Graphene for Terahertz Applications
journal, August 2013


Geometries and materials for subwavelength surface plasmon modes
journal, January 2004

  • Zia, Rashid; Selker, Mark D.; Catrysse, Peter B.
  • Journal of the Optical Society of America A, Vol. 21, Issue 12
  • DOI: 10.1364/JOSAA.21.002442

Confinement and propagation characteristics of subwavelength plasmonic modes
journal, October 2008


Figures of merit for surface plasmon waveguides
journal, January 2006


Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films
journal, May 2013

  • Jongbum Kim, ; Naik, G. V.; Emani, N. K.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, Issue 3
  • DOI: 10.1109/JSTQE.2013.2238611

Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy
journal, December 2000

  • Beard, Matthew C.; Turner, Gordon M.; Schmuttenmaer, Charles A.
  • Physical Review B, Vol. 62, Issue 23
  • DOI: 10.1103/PhysRevB.62.15764

Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies
journal, June 2010

  • Feigenbaum, Eyal; Diest, Kenneth; Atwater, Harry A.
  • Nano Letters, Vol. 10, Issue 6, p. 2111-2116
  • DOI: 10.1021/nl1006307

Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators
journal, May 2013

  • Brar, Victor W.; Jang, Min Seok; Sherrott, Michelle
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl400601c

Optical properties of metallic films for vertical-cavity optoelectronic devices
journal, January 1998

  • Rakić, Aleksandar D.; Djurišić, Aleksandra B.; Elazar, Jovan M.
  • Applied Optics, Vol. 37, Issue 22, p. 5271-5283
  • DOI: 10.1364/AO.37.005271

Optical Constants of the Noble Metals
journal, December 1972


Alternative Plasmonic Materials: Beyond Gold and Silver
journal, May 2013

  • Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra
  • Advanced Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adma.201205076

Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W
journal, January 1985

  • Ordal, M. A.; Bell, Robert J.; Alexander, R. W.
  • Applied Optics, Vol. 24, Issue 24
  • DOI: 10.1364/AO.24.004493

Dirac charge dynamics in graphene by infrared spectroscopy
journal, June 2008

  • Li, Z. Q.; Henriksen, E. A.; Jiang, Z.
  • Nature Physics, Vol. 4, Issue 7
  • DOI: 10.1038/nphys989

Tunable infrared plasmonic devices using graphene/insulator stacks
journal, April 2012

  • Yan, Hugen; Li, Xuesong; Chandra, Bhupesh
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.59

Highly confined low-loss plasmons in graphene–boron nitride heterostructures
journal, December 2014

  • Woessner, Achim; Lundeberg, Mark B.; Gao, Yuanda
  • Nature Materials, Vol. 14, Issue 4
  • DOI: 10.1038/nmat4169

One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves
journal, July 2013

  • Chatzakis, Ioannis; Tassin, Philippe; Luo, Liang
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4813620

Negative dispersion: a backward wave or 
fast light? Nanoplasmonic examples
journal, January 2009

  • Feigenbaum, Eyal; Kaminski, Noam; Orenstein, Meir
  • Optics Express, Vol. 17, Issue 21
  • DOI: 10.1364/OE.17.018934

Nonlinear plasmonic slot waveguides
journal, January 2008

  • Davoyan, Arthur R.; Shadrivov, Ilya V.; Kivshar, Yuri S.
  • Optics Express, Vol. 16, Issue 26
  • DOI: 10.1364/OE.16.021209

Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides
journal, January 2010


Plasmon Confinement in Ultrathin Continuous Ag Films
journal, September 1999


Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity
journal, March 2006


Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides
journal, January 2009

  • Hill, Martin T.; Marell, Milan; Leong, Eunice S. P.
  • Optics Express, Vol. 17, Issue 13, p. 11107-11112
  • DOI: 10.1364/OE.17.011107

PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator
journal, February 2009

  • Dionne, Jennifer A.; Diest, Kenneth; Sweatlock, Luke A.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803868k

    Works referencing / citing this record:

    Plasmonics of topological insulators at optical frequencies
    journal, August 2017

    • Yin, Jun; Krishnamoorthy, Harish NS; Adamo, Giorgio
    • NPG Asia Materials, Vol. 9, Issue 8
    • DOI: 10.1038/am.2017.149

    Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications
    journal, February 2019

    • Piccinotti, Davide; Gholipour, Behrad; Yao, Jin
    • Advanced Materials, Vol. 31, Issue 14
    • DOI: 10.1002/adma.201807083

    Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films
    journal, February 2018


    Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications
    journal, February 2019

    • Piccinotti, Davide; Gholipour, Behrad; Yao, Jin
    • Advanced Materials, Vol. 31, Issue 14
    • DOI: 10.1002/adma.201807083

    Plasmonics of topological insulators at optical frequencies
    journal, August 2017

    • Yin, Jun; Krishnamoorthy, Harish NS; Adamo, Giorgio
    • NPG Asia Materials, Vol. 9, Issue 8
    • DOI: 10.1038/am.2017.149

    Fano resonance engineering in slanted cavities with hyperbolic metamaterials
    journal, September 2016