skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
OTHER U.S. STATESNIH
OSTI Identifier:
1349915
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nucleic Acids Research; Journal Volume: 45; Journal Issue: 5
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Hong, Samuel, Wang, Dongxue, Horton, John R., Zhang, Xing, Speck, Samuel H., Blumenthal, Robert M., and Cheng, Xiaodong. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. United States: N. p., 2017. Web. doi:10.1093/nar/gkx057.
Hong, Samuel, Wang, Dongxue, Horton, John R., Zhang, Xing, Speck, Samuel H., Blumenthal, Robert M., & Cheng, Xiaodong. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. United States. doi:10.1093/nar/gkx057.
Hong, Samuel, Wang, Dongxue, Horton, John R., Zhang, Xing, Speck, Samuel H., Blumenthal, Robert M., and Cheng, Xiaodong. Wed . "Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta". United States. doi:10.1093/nar/gkx057.
@article{osti_1349915,
title = {Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta},
author = {Hong, Samuel and Wang, Dongxue and Horton, John R. and Zhang, Xing and Speck, Samuel H. and Blumenthal, Robert M. and Cheng, Xiaodong},
abstractNote = {},
doi = {10.1093/nar/gkx057},
journal = {Nucleic Acids Research},
number = 5,
volume = 45,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • Epstein-Barr virus (EBV) is a lymphotrophic herpesvirus infecting most of the world's population. It is associated with a number of human lymphoid and epithelial tumors and lymphoproliferative diseases in immunocompromised patients. A subset of latent EBV antigens is required for immortalization of primary B-lymphocytes. The metastatic suppressor Nm23-H1 which is downregulated in human invasive breast carcinoma reduces the migration and metastatic activity of breast carcinoma cells when expressed from a heterologous promoter. Interestingly, the EBV nuclear antigen 3C (EBNA3C) reverses these activities of Nm23-H1. The alpha V integrins recognize a variety of ligands for signaling and are involved in cellmore » migration and proliferation and also serve as major receptors for extracellular-matrix-mediated cell adhesion and migration. The goal of this study was to determine if Nm23-H1 and EBNA3C can modulate alpha V integrin expression and downstream activities. The results of our studies indicate that Nm23-H1 downregulates alpha V intregrin expression in a dose responsive manner. In contrast, EBNA3C can upregulate alpha V integrin expression. Furthermore, the study showed that the association of the Sp1 and GATA transcription factors with Nm23-H1 is required for modulation of the alpha V integrin activity. Thus, these results suggest a direct correlation between the alpha V integrin expression and the interaction of Nm23-H1 with EBNA3C.« less
  • The properties of specific human interleukin 1 (IL 1) receptors on human Epstein Barr virus-transformed B lymphocytes (EBV-B) were studied. Purified human IL 1-..beta.. from a myelomonocytic cell line (THP-1) was labeled with /sup 125/I. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the highest amount of /sup 125/I-IL 1-..beta... The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by F(ab)'/sub 2/ fragments of anti-human IL 1 and recombinant human IL 1-..cap alpha.., as well as by unlabeled human IL 1-..beta.. but not by recombinant lymphotoxin, recombinant tumor necrosis factor, or phorbol myristicmore » acid, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. bind specifically to the same receptor. The m.w. of IL 1 receptor on human EBV-B cells was estimated to be 60,000 by both the chemical cross-linking method and high pressure liquid chromatography (HPLC). The isoelectric point of solubilized human IL 1 receptor was 7.3 on HPLC chromatofocusing. The evidence of existence of IL 1 receptor on human EBV-B cells additionally supports the hypothesis that IL 1 may be an autocrine signal for these cells.« less
  • Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of amore » plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.« less
  • ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Heremore » we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.« less
  • Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determinedmore » by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.« less