skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sequential cooling insert for turbine stator vane

Abstract

A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

Inventors:
Publication Date:
Research Org.:
Florida Turbine Technologies, Inc., Jupitor, FL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1349726
Patent Number(s):
9,611,745
Application Number:
14/511,211
Assignee:
Florida Turbine Technologies, Inc. NETL
DOE Contract Number:
FE0006696
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Oct 10
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 33 ADVANCED PROPULSION SYSTEMS

Citation Formats

Jones, Russel B. Sequential cooling insert for turbine stator vane. United States: N. p., 2017. Web.
Jones, Russel B. Sequential cooling insert for turbine stator vane. United States.
Jones, Russel B. Tue . "Sequential cooling insert for turbine stator vane". United States. doi:. https://www.osti.gov/servlets/purl/1349726.
@article{osti_1349726,
title = {Sequential cooling insert for turbine stator vane},
author = {Jones, Russel B},
abstractNote = {A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Apr 04 00:00:00 EDT 2017},
month = {Tue Apr 04 00:00:00 EDT 2017}
}

Patent:

Save / Share:
  • A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.
  • A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.
  • A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.
  • A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chambermore » for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.« less
  • This patent describes a gas turbine. It comprises turbine vanes, each of the vanes supplied with cooling air and having: an airfoil portion forming a first cavity having an insert disposed therein for directing the flow of the cooling air, the insert having first and second insert ends; a shroud portion from which the airfoil portion extends, the insert attached to the shroud portion at the first insert end; an insert extension extending through a portion of the insert and extending beyond the first insert end, the insert extension and the insert forming an annular gap therebetween separating the insertmore » from the insert extension; a plate covering at least a portion of the shroud, the plate having a first hole formed therein through which the insert extension extends; and at least a first seal extending between the insert extension and the insert, and sealing the annular gap therebetween. This patent also describes a method of making a gas turbine. It comprises welding a first tubular insert adjacent its first end to a vane outer shroud; partially inserting a second tubular insert into the first tubular member and attaching the second tubular insert thereto; placing a plate having a hole formed therein on the outer shroud so that the hole surrounds the second tubular insert; and attaching the second tubular insert to the plate by placing a first seal between the first and second tubular inserts and attaching the first seal to each of the first and second tubular inserts, and placing a second seal between the second tubular insert and the plate and welding the second seal to the second tubular insert and the plate.« less