skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

Abstract

The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot bemore » realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

Authors:
 [1];  [2];  [2];  [1];  [2]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Univ. of Arkansas, Fayetteville, AR (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1349307
Alternate Identifier(s):
OSTI ID: 1349308; OSTI ID: 1378046
Report Number(s):
PNNL-SA-123526
Journal ID: ISSN 2198-3844; VT1201000; WC0102000
Grant/Contract Number:
AC05-76RL01830; AC02-05CH11231; 18769
Resource Type:
Journal Article: Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Volume: 4; Journal Issue: 8; Journal ID: ISSN 2198-3844
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; concentrated electrolytes; interfacial stability; solvation structures; solid electrolyte interphase (SEI)

Citation Formats

Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, and Xiao, Jie. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. United States: N. p., 2017. Web. doi:10.1002/advs.201700032.
Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, & Xiao, Jie. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. United States. doi:10.1002/advs.201700032.
Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, and Xiao, Jie. Fri . "Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications". United States. doi:10.1002/advs.201700032.
@article{osti_1349307,
title = {Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications},
author = {Zheng, Jianming and Lochala, Joshua A. and Kwok, Alexander and Deng, Zhiqun Daniel and Xiao, Jie},
abstractNote = {The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.},
doi = {10.1002/advs.201700032},
journal = {Advanced Science},
number = 8,
volume = 4,
place = {United States},
year = {Fri Mar 31 00:00:00 EDT 2017},
month = {Fri Mar 31 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1002/advs.201700032

Citation Metrics:
Cited by: 14works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 14
  • The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquidmore » electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less
  • The present research program involves utilizing appropriate experimental probes for measuring the movement of ionic and electronic charge carriers in ceramic materials suitable for solid electrolyte and electrode applications in high-performance, secondary battery and fuel cell systems. Special emphasis is placed on developing: (1) a better understanding of the effects of structure, impurities and composition on charge carrier transport mechanisms in such materials; and (2) detailed knowledge of the kinetics and mechanism of reactions occurring (on a microscopic scale) at the electrode-electrolyte interfaces of energy storage and conversion systems.
  • We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized {pi} states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.
  • Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using Finite Element Analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary tomore » provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.« less