skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The G4Foam Experiment: Global climate impacts of regional ocean albedo modification

Abstract

Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6Wm -2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0,more » with statistically significant cooling relative to RCP6.0 south of 30°N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June–July–August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m -2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. Finally, the precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Rutgers Univ., New Brunswick, NJ (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1349159
Report Number(s):
PNNL-SA-122915
Journal ID: ISSN 1680-7324
Grant/Contract Number:
AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 17; Journal Issue: 1; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Gabriel, Corey J., Robock, Alan, Xia, Lili, Zambri, Brian, and Kravitz, Ben. The G4Foam Experiment: Global climate impacts of regional ocean albedo modification. United States: N. p., 2017. Web. doi:10.5194/acp-17-595-2017.
Gabriel, Corey J., Robock, Alan, Xia, Lili, Zambri, Brian, & Kravitz, Ben. The G4Foam Experiment: Global climate impacts of regional ocean albedo modification. United States. doi:10.5194/acp-17-595-2017.
Gabriel, Corey J., Robock, Alan, Xia, Lili, Zambri, Brian, and Kravitz, Ben. Thu . "The G4Foam Experiment: Global climate impacts of regional ocean albedo modification". United States. doi:10.5194/acp-17-595-2017. https://www.osti.gov/servlets/purl/1349159.
@article{osti_1349159,
title = {The G4Foam Experiment: Global climate impacts of regional ocean albedo modification},
author = {Gabriel, Corey J. and Robock, Alan and Xia, Lili and Zambri, Brian and Kravitz, Ben},
abstractNote = {Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6Wm-2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30°N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June–July–August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m-2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. Finally, the precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.},
doi = {10.5194/acp-17-595-2017},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 1,
volume = 17,
place = {United States},
year = {Thu Jan 12 00:00:00 EST 2017},
month = {Thu Jan 12 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less
  • Simulated future summers (i.e., 2049-2051) and annual (i.e., 2050) average regional O 3 and PM2.5 concentrations over North America are compared with historic (i.e., 2000-2002 summers and all of 2001) levels to investigate the potential impacts of global climate change on regional air quality. Meteorological inputs to the CMAQ chemical transport model are developed by downscaling the GISS Global Climate Model simulations using an MM5-based regional climate model. Future-year emissions for North America are developed by growing the US EPA CAIR inventory, Mexican and Canadian emissions and by using the IMAGE model with the IPCC A1B emissions scenario that ismore » also used in projecting future climate. Reductions of more than 50% in NOX and SO2 emissions are forecast. The impacts of global climate change alone on regional air quality are small compared to impacts from emission control-related reductions in the US and Canada. The combined effect of climate change and emission reductions lead to a 20% decrease (regionally varying from -11% to -28% regionally) in the mean summer maximum daily 8-hr ozone levels (M8hO3) over the US, -8% over Canada and -10% over Northern Mexico. The mean annual PM2.5 concentrations are estimated to be 23% lower (varies from -9% to -32%) over the US, -7% and -15% over Western and Eastern Canada, respectively and -25% over Northern Mexico. Major reductions are expected in sulfate, nitrate and ammonium fractions of annually-averaged PM2.5 for all sub-regions. The limited reduction in organic carbon over the US and Northern Mexico and the higher concentrations over Canada suggests that organic carbon will be the dominant component of PM2.5 mass over most of the continent in the future. Regionally, the Eastern US benefits more than the rest of the regions from reductions in both M8hO3 and PM2.5, due to both spatial variations in the meteorological and emissions changes. Reduction in the higher M8hO3 concentrations is also estimated for all sub-regions and less days with M8hO3 above the air quality standards in urban sites with Atlanta in the Southeast benefiting most.« less
  • Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less
  • The 1973 Rand version of the Mintz-Arakawa model of the general circulation of the atmosphere was used to study the consequences of high concentrations of hygroscopic aerosols in a limited geographic region. The experiment was designed to investigate effects of the activity of the aerosol as condenstion nuclei and the consequent abnormal production of cloudiness and alteration of precipitation were of primary concern. Values of meteorological parameters generated by the experiment were compared with values simulated by a control (in which the polluted area was absent). Cloudiness increased over the polluted area and the temperature at the surface and inmore » the lower atmosphere became warmer. Rainfall, however, was not significantly altered in the polluted region in spite of changes in the parameterization of rain that would make rainfall more difficult with a given atmospheric structure. The data suggest a possible connection between North American pollution and South American rainfall. Comparison of data from the experiment and the control indicate that in the experiment, rainfall decreases gradually and steadily within a large area of South America centered on the equator. The immediate cause is the movement of the region of maximum moisture convergence northward, toward the polluted area, while it is at the same time decreasing in value. The movement is clear and the rainfall changes were found to be statistically significant. Although possible causes are discussed, the model does not properly simulate the hydrological cycle in the tropics, and a definitive explanation of decreasing rainfall in South America is marred by an unrealistic, unstable, moisture-convergence/rain cycle that occurs in the primary control. This behavior of the model precludes a conclusion that North America pollution will cause decreased tropical rainfall, but the data are sufficiently suggestive that this possibility should be examined in future investigations.« less
  • Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surfacemore » albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.« less