skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report

Abstract

There is significant interest in the interaction of aquatic organisms with current-based marine and hydrokinetic (MHK) technologies. Determining the potential impacts of MHK devices on fish behavior is critical to addressing the environmental concerns that could act as barriers to the permitting and deployment of MHK devices. To address these concerns, we use field monitoring and fish behavior models to characterize the behavioral responses of fish to MHK turbines and infer potential stimuli that may have elicited the observed behavioral changes.

Authors:
 [1];  [2];  [2];  [2];  [3]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Univ. of Maine, Orono, ME (United States)
  3. United States Army Engineer R & D Center, Vicksburg, MI (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Wind and Hydropower Technologies
OSTI Identifier:
1348394
Report Number(s):
ANL-/EVS-17/6
129701
DOE Contract Number:
AC02-06CH11357
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES

Citation Formats

Grippo, Mark A., Shen, Haixue, Zydlewski, Gayle, Rao, Shivanesh, and Goodwin, Andy. Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report. United States: N. p., 2017. Web. doi:10.2172/1348394.
Grippo, Mark A., Shen, Haixue, Zydlewski, Gayle, Rao, Shivanesh, & Goodwin, Andy. Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report. United States. doi:10.2172/1348394.
Grippo, Mark A., Shen, Haixue, Zydlewski, Gayle, Rao, Shivanesh, and Goodwin, Andy. Wed . "Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report". United States. doi:10.2172/1348394. https://www.osti.gov/servlets/purl/1348394.
@article{osti_1348394,
title = {Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report},
author = {Grippo, Mark A. and Shen, Haixue and Zydlewski, Gayle and Rao, Shivanesh and Goodwin, Andy},
abstractNote = {There is significant interest in the interaction of aquatic organisms with current-based marine and hydrokinetic (MHK) technologies. Determining the potential impacts of MHK devices on fish behavior is critical to addressing the environmental concerns that could act as barriers to the permitting and deployment of MHK devices. To address these concerns, we use field monitoring and fish behavior models to characterize the behavioral responses of fish to MHK turbines and infer potential stimuli that may have elicited the observed behavioral changes.},
doi = {10.2172/1348394},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This projectmore » was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.« less
  • Laboratory bioassays to determine the acute toxicity of monochloramine, dichloramine, hypochlorous acid, and hypochlorite ion to emerald shiners, channel catfish, and rainbow trout were conducted. Four exposure regimes typical of chlorination schedules at operating steam electric power plants were used. Fish were exposed to single 15-minute, 30-minute, 120-minute, and quadruple 30-minute periods. No mortality or LC50 values were determined for each species of fish and chemical species of chlorine. Hypochlorous acid was the most toxic form of chlorine studied, followed closely by dichloramine. Monochloramine and hypochlorite ion were three to four times less toxic than hypochlorous acid and dichloramine. Onmore » the average, emerald shiners were 1.8 times more sensitive to chlorine than channel catfish and 3.3 times more sensitive than rainbow trout to the four forms of chlorine. The fish were more tolerant of chlorine during short duration exposures and most sensitive during the continuous 120-minute exposures. The significant differences in toxicity noted among the various chlorine species suggest that careful attention should be paid not only to total residual chlorine but to both the chlorine and fish species present and the duration of exposure expected in establishing chlorination regimes.« less
  • Fatigue crack growth and plane strain fracture toughness have been examined in three 1 Cr--Mo--V bainitic steam generator rotor steels. The effects of inclusion content, manufacturing processes, and repeated aging on the rate of subcritical crack growth at room temperature have been investigated using compact tension specimens. The impact properties of these steels above the temperature range of -62 - +100/sup 0/C have also been determined using both standard and precracked Charpy specimens. In addition the tensile properties above the temperature range of 0/sup 0/ to 538/sup 0/C have been evaluated using cylindrical tensile specimens. Variation in inclusion content, microstructure,more » yield and tensile strengths, and ductile to brittle transition temperature had no effect on the crack growth rate of 1 Cr--Mo--V rotor steels; brittle cleavage modes of fatigue were not observed in either continuous or intermittently strain aged specimens tested at ambient temperature. However, unstable cleavage crack extension can be initiated during cold starts if a sufficiently long crack is present.« less
  • Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2:more » Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.« less
  • Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai‘i, and a better understanding of their ecological effects on fish, particularly on special-status fish (e.g., threatened and endangered) is needed to facilitate project design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef-associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs), formingmore » the nuclei for groups of fishes. Little is known about the potential for WECs and TECs to function as artificial reefs and FADs in coastal waters of the U.S. West Coast and Hawai‘i. We evaluated these potential ecological interactions by reviewing relevant information about fish associations with surrogate structures, such as artificial reefs, natural reefs, kelps, floating debris, oil and gas platforms, marine debris, anchored FADs deployed to enhance fishing opportunities, net-cages used for mariculture, and piers and docks. Based on our review, we postulate that the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai‘i likely will function as small-scale artificial reefs and attract potentially high densities of reef-associated fishes (including special-status rockfish species [Sebastes spp.] along the mainland), and that the midwater and surface structures of WECs placed in the tropical waters of Hawai‘i likely will function as de facto FADs with species assemblages varying by distance from shore and deployment depth. Along the U.S. West Coast, frequent associations with midwater and surface structures may be less likely: juvenile, semipelagic, kelp-associated rockfishes may occur at midwater and surface structures of WECs in coastal waters of southern California to Washington, and occasional, seasonal, or transitory associations of coastal pelagic fishes such as jack mackerel (Trachurus symmetricus) may also occur at WECs in these waters. Importantly, our review indicated that negative effects of WEC structures on special-status fish species, such as increased predation of juvenile salmonids or rockfishes, are not likely. In addition, WECs installed in coastal California, especially in southern California waters, have the potential to attract high densities of reef-associated fishes and may even contribute to rockfish productivity, if fish respond to the WECs similarly to oil and gas platforms, which have some of the highest secondary production per unit area of seafloor of any marine habitat studied globally (Claisse et al. 2014). We encountered some information gaps, owing to the paucity or lack, in key locations, of comparable surrogate structures in which fish assemblages and ecological interactions were studied. TECs are most likely to be used in the Puget Sound area, but suitable surrogates are lacking there. However, in similarly cold-temperate waters of Europe and Maine, benthopelagic fish occurred around tidal turbines during lower tidal velocities, and this type of interaction may be expected by similar species at TECs in Puget Sound. To address information gaps in the near term, such as whether WECs would function as FADs in temperate waters, studies of navigation buoys using hydroacoustics are recommended.« less