skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals

Abstract

The upper portion of Lower Three Runs includes several ponds, reservoirs, and canals that were formerly used as a cooling system for nuclear production reactors. This area was divided into nine exposure areas (EAs) for the assessment of environmental contamination resulting from past reactor operations and other industrial processes. A tiered screening process identified several contaminants of potential concern including aluminum, cyanide, lead, manganese, mercury, DDD, DDE, and DDT. Risks posed by these contaminants to ecological receptors (river otter, belted kingfisher, raccoon, and blue heron) were assessed using contaminant exposure models that estimated contaminant intake resulting from ingestion of food, water, and sediment/ soil and compared these intakes with toxicity reference values (TRVs). The contaminant exposure models showed that the TRVs were not exceeded in the otter model, exceeded by aluminum in EA 7 (Pond 2 and associated canals) in the raccoon model, and exceeded by mercury in EAs 2, 3 (Pond B), 6 (Par Pond), and 8 (Ponds 4 and 5 and Canal to Pond C) in both the kingfisher and blue heron models. Hazard quotients (total exposure dose divided by the TRV) were 2.8 for aluminum and 1.7- 3.6 for mercury. The primary route of exposure for aluminummore » was the ingestion of soil, and the primary route of exposure for mercury was the ingestion of mercury contaminated fish. Elevated levels of mercury in fish were at least partly the result of the aerial deposition of mercury onto Lower Three Runs and its watershed. The atmospheric deposition of mercury creates pervasive contamination in fish throughout the Savannah River basin. Another possible source of mercury was the discharge of mercury contaminated Savannah River water into the Lower Three Runs cooling ponds and canals during previous years of reactor operation. This contamination originated from industries located upstream of the SRS. The aluminum exceedance for the raccoon was likely the result of naturally high aluminum levels in SRS soils rather than SRS operations. Aluminum exceedances have previously been observed in relatively undisturbed background locations as well as areas affected by SRS operations. Aluminum exceedances are more likely with the raccoon than the other receptors because it consumes more soil as a result of its feeding habits. Sensitivity analysis showed that model uncertainty can be reduced by adequate sampling of key variables (e.g., fish and sediments). Although sediment samples were collected from all EAs, fish samples were not collected from three EAs and some analytes (pesticides and cyanide) were not measured in fish. Water-to-fish concentration ratios were used to estimate contaminant levels in fish when direct measurements from fish were unavailable; however, such estimates are potentially less accurate than direct measurements.« less

Authors:
 [1];  [1]
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1348179
Report Number(s):
SRNL-STI-2017-00122
DOE Contract Number:
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Paller, M., and Blas, S. Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals. United States: N. p., 2017. Web. doi:10.2172/1348179.
Paller, M., & Blas, S. Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals. United States. doi:10.2172/1348179.
Paller, M., and Blas, S. Tue . "Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals". United States. doi:10.2172/1348179. https://www.osti.gov/servlets/purl/1348179.
@article{osti_1348179,
title = {Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals},
author = {Paller, M. and Blas, S.},
abstractNote = {The upper portion of Lower Three Runs includes several ponds, reservoirs, and canals that were formerly used as a cooling system for nuclear production reactors. This area was divided into nine exposure areas (EAs) for the assessment of environmental contamination resulting from past reactor operations and other industrial processes. A tiered screening process identified several contaminants of potential concern including aluminum, cyanide, lead, manganese, mercury, DDD, DDE, and DDT. Risks posed by these contaminants to ecological receptors (river otter, belted kingfisher, raccoon, and blue heron) were assessed using contaminant exposure models that estimated contaminant intake resulting from ingestion of food, water, and sediment/ soil and compared these intakes with toxicity reference values (TRVs). The contaminant exposure models showed that the TRVs were not exceeded in the otter model, exceeded by aluminum in EA 7 (Pond 2 and associated canals) in the raccoon model, and exceeded by mercury in EAs 2, 3 (Pond B), 6 (Par Pond), and 8 (Ponds 4 and 5 and Canal to Pond C) in both the kingfisher and blue heron models. Hazard quotients (total exposure dose divided by the TRV) were 2.8 for aluminum and 1.7- 3.6 for mercury. The primary route of exposure for aluminum was the ingestion of soil, and the primary route of exposure for mercury was the ingestion of mercury contaminated fish. Elevated levels of mercury in fish were at least partly the result of the aerial deposition of mercury onto Lower Three Runs and its watershed. The atmospheric deposition of mercury creates pervasive contamination in fish throughout the Savannah River basin. Another possible source of mercury was the discharge of mercury contaminated Savannah River water into the Lower Three Runs cooling ponds and canals during previous years of reactor operation. This contamination originated from industries located upstream of the SRS. The aluminum exceedance for the raccoon was likely the result of naturally high aluminum levels in SRS soils rather than SRS operations. Aluminum exceedances have previously been observed in relatively undisturbed background locations as well as areas affected by SRS operations. Aluminum exceedances are more likely with the raccoon than the other receptors because it consumes more soil as a result of its feeding habits. Sensitivity analysis showed that model uncertainty can be reduced by adequate sampling of key variables (e.g., fish and sediments). Although sediment samples were collected from all EAs, fish samples were not collected from three EAs and some analytes (pesticides and cyanide) were not measured in fish. Water-to-fish concentration ratios were used to estimate contaminant levels in fish when direct measurements from fish were unavailable; however, such estimates are potentially less accurate than direct measurements.},
doi = {10.2172/1348179},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 21 00:00:00 EDT 2017},
month = {Tue Mar 21 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • One of the initial stages in ecological risk assessment of hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration. This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented here. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. Itmore » also presents the data used to calculate the benchmarks, and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility.« less
  • An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity tomore » earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.« less
  • A hazardous waste site may contain hundred of chemicals; therefore, it is important to screen contaminants of potential concern of the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. |Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark,more » more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test results, and field survey data. A fourth integrative approach incorporates all three types of data.« less
  • This report presents potential screening benchmarks for protection of aquatic life form contaminants in water. Because there is no guidance for screening for benchmarks, a set of alternative benchmarks is presented herein. This report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility. Also included is the updates of benchmark values where appropriate, new benchmark values, secondary sources are replaced by primary sources, and a more completemore » documentation of the sources and derivation of all values are presented.« less