skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1348049
Grant/Contract Number:
DE -SC0007859
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 6; Related Information: CHORUS Timestamp: 2017-03-23 22:12:15; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Orlofsky, Nicholas, Pierce, Aaron, and Wells, James D. Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.95.063518.
Orlofsky, Nicholas, Pierce, Aaron, & Wells, James D. Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves. United States. doi:10.1103/PhysRevD.95.063518.
Orlofsky, Nicholas, Pierce, Aaron, and Wells, James D. Thu . "Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves". United States. doi:10.1103/PhysRevD.95.063518.
@article{osti_1348049,
title = {Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves},
author = {Orlofsky, Nicholas and Pierce, Aaron and Wells, James D.},
abstractNote = {},
doi = {10.1103/PhysRevD.95.063518},
journal = {Physical Review D},
number = 6,
volume = 95,
place = {United States},
year = {Thu Mar 23 00:00:00 EDT 2017},
month = {Thu Mar 23 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1103/PhysRevD.95.063518

Citation Metrics:
Cited by: 8works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 13
  • The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of gravitational-wave astronomy in the coming years. Massive (> or approx. 10{sup 8}M{sub {center_dot}}) and low-redshift (< or approx. 1.5) sources are expected to be individually resolved by upcoming PTAs, and our ability to use them as astrophysical probes will depend on the accuracy with which their parameters can be measured. In this paper we estimate the precision of such measurements using the Fisher-information-matrix formalism. For this initial study we restrict ourselves to 'monochromatic' sources, i.e. binaries whose frequency evolution is negligible duringmore » the expected {approx_equal}10 yr observation time, which represent the bulk of the observable population based on current astrophysical predictions. In this approximation, the system is described by seven parameters and we determine their expected statistical errors as a function of the number of pulsars in the array, the array sky coverage, and the signal-to-noise ratio (SNR) of the signal. At fixed SNR (regardless of the number of pulsars in the PTA), the gravitational-wave astronomy capability of a PTA is achieved with {approx_equal}20 pulsars; adding more pulsars (up to 1000) to the array reduces the source error box in the sky {Delta}{Omega} by a factor {approx_equal}5 and has negligible consequences on the statistical errors on the other parameters, because the correlations among parameters are already removed to a large extent. If one folds in the increase of coherent SNR proportional to the square root of the number of pulsars, {Delta}{Omega} improves as 1/SNR{sup 2} and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR=10, we find {Delta}{Omega}{approx_equal}40 deg{sup 2}, a fractional error on the signal amplitude of {approx_equal}30% (which constrains only very poorly the chirp mass-luminosity distance combination M{sup 5/3}/D{sub L}), and the source inclination and polarization angles are recovered at the {approx_equal}0.3 rad level. The ongoing Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR=10 the source position can be determined with {Delta}{Omega}{approx_equal}10 deg{sup 2}, but has poorer (by an order of magnitude) performance for sources in the northern hemisphere.« less
  • Here, we entertain the possibility that primordial black holes of mass ~ (10 26–10 29)g, with Schwarzschild radii of O(cm), constitute ~ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O(10-100)GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting “David and Goliath (D&G)” binaries could be detectable at Advanced LIGOmore » or Advanced Virgo for hours or more, possibly over distances of O(10)Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O(10-100)GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.« less
  • Here, we entertain the possibility that primordial black holes of mass ~ (10 26–10 29)g, with Schwarzschild radii of O(cm), constitute ~ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O(10-100)GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting “David and Goliath (D&G)” binaries could be detectable at Advanced LIGOmore » or Advanced Virgo for hours or more, possibly over distances of O(10)Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O(10-100)GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.« less
  • We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it frommore » an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.« less