skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System

Abstract

Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The current proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.

Authors:
 [1]
  1. Polestar Technologies Inc., Needham Heights, MA (United States)
Publication Date:
Research Org.:
Polestar Technologies Inc., Needham Heights, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1347924
Report Number(s):
DOE-PTI-15837
DOE Contract Number:
SC0015837
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Dewvaporation; Desalination; Plasmonic nanoparticle; Solar energy conversion; Solar powered steam to water conversion; High conversion efficiency; Fiber based steam generation

Citation Formats

Ranganathan, Shashidhar. Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System. United States: N. p., 2017. Web. doi:10.2172/1347924.
Ranganathan, Shashidhar. Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System. United States. doi:10.2172/1347924.
Ranganathan, Shashidhar. 2017. "Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System". United States. doi:10.2172/1347924. https://www.osti.gov/servlets/purl/1347924.
@article{osti_1347924,
title = {Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System},
author = {Ranganathan, Shashidhar},
abstractNote = {Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The current proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.},
doi = {10.2172/1347924},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 3
}

Technical Report:

Save / Share:
  • The desalination subsystem of the solar-powered desalination pilot project located at Yanbu, Saudi Arabia, was operated successfully for two years. Water production rates of 180 m/sup 3//day can be obtained for a period of 24 hours. In addition, once the proper procedures are followed, water production can continue for long periods of time at rates of 135 m/sup 3//day. Electrical energy costs to produce one m/sup 3/ of potable water is SR 1.66 in Saudi Arabia and $1.66 to $2.21 in the United States. As with any new process, a number of important details must be learned to obtain themore » most out of the system. Some of these details are: (1) product water production rate and efficiency are maximized for this system at 10% salinity and ..delta..Ts greater than 3/degree/C, (2) the anhydrous ammonia must be kept clean, (3) the ice in the freezer tubes must be melted without decreasing the salinity of the mixture in the slurry separator, (4) the salinity of the mixture going through each of the freezer tubes must be the same, and (5) the salinity of the slurry must be less than 11%. The authors believe that a subsequent design of an indirect-contact freeze desalination sub-system can be successful. Maintenance of the desalination subsystem has been nominal with only about 6/1/2/ person days required per month. Proper operating procedures and some redesign of the desalination subsystem should minimize the required maintenance. 4 refs., 7 figs., 4 tabs.« less
  • This report presents an analysis of the performance of the energy delivery subsystem composed of a steam generator and superheater, a steam engine, and steam condensing equipment. When combined, the thermodynamic processes involved in this subsystem form a basic Rankine power cycle. Water is the cycle working fluid. The prime mover is a Skinner RV-1 Unaflow steam engine. The steam condensing equipment includes a condensate pump, boiler feed pump, deaerator, condensate tank, steam condenser, and an absorption refrigeration unit. Control problems, environmental effects, and characterization of the equipment are included in this report. 7 refs., 3 figs., 1 tab.
  • A woman in the early 1700s who became one of Europe’s leading interpreters of mathematics and a poor bookbinder who became one of the giants of nineteenth-century science are just two of the pioneers whose stories NOVA explored in Einstein’s Big Idea. This two-hour documentary premiered on PBS in October 2005 and is based on the best-selling book by David Bodanis, E=mc2: A Biography of the World’s Most Famous Equation. The film and book chronicle the scientific challenges and discoveries leading up to Einstein’s startling conclusion that mass and energy are one, related by the formula E = mc 2.
  • Catalytic Inc. was awarded a contract to conduct a preliminary system design and cost analysis for a brackish water desalination project to be located in Brownsville, Texas. System analyses and economic analyses were performed to define the baseline solar energy desalination system. The baseline system provides an average daily product water capacity of 6000 mT. The baseline system is optimal relative to technological risk, performance, and product water cost. Subsystems and their interfaces have been defined and product water cost projections made for commercial plants in a range of capacities. Science Applications, Inc. (SAI), subcontractor to Catalytic, had responsibility formore » the solar power system. This, the final report, summarizes the work performed under the Phase I effort.« less
  • The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumpsmore » and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.« less