skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potentials for Platooning in U.S. Highway Freight Transport: Preprint

Abstract

Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, establishing that about 65% of the total miles driven by combination trucks could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the U.S. provides an upper bound for scenario analysismore » considering fleet willingness to platoon as an estimate of overall benefits of early adoption of CAV technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1347503
Report Number(s):
NREL/CP-5400-67618
Journal ID: ISSN 1946--3928
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Journal Volume: 10; Journal Issue: 1; Conference: To be presented at WCX17: SAE World Congress Experience, 4-6 April 2017, Detroit, Michigan
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 33 ADVANCED PROPULSION SYSTEMS; advanced vehicles and systems; vehicle analysis; transportation; systems analysis; integration; fleet test and evaluation; truck platooning

Citation Formats

Muratori, Matteo, Holden, Jacob, Lammert, Michael, Duran, Adam, Young, Stanley, and Gonder, Jeffrey. Potentials for Platooning in U.S. Highway Freight Transport: Preprint. United States: N. p., 2017. Web. doi:10.4271/2017-01-0086.
Muratori, Matteo, Holden, Jacob, Lammert, Michael, Duran, Adam, Young, Stanley, & Gonder, Jeffrey. Potentials for Platooning in U.S. Highway Freight Transport: Preprint. United States. doi:10.4271/2017-01-0086.
Muratori, Matteo, Holden, Jacob, Lammert, Michael, Duran, Adam, Young, Stanley, and Gonder, Jeffrey. Wed . "Potentials for Platooning in U.S. Highway Freight Transport: Preprint". United States. doi:10.4271/2017-01-0086. https://www.osti.gov/servlets/purl/1347503.
@article{osti_1347503,
title = {Potentials for Platooning in U.S. Highway Freight Transport: Preprint},
author = {Muratori, Matteo and Holden, Jacob and Lammert, Michael and Duran, Adam and Young, Stanley and Gonder, Jeffrey},
abstractNote = {Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, establishing that about 65% of the total miles driven by combination trucks could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the U.S. provides an upper bound for scenario analysis considering fleet willingness to platoon as an estimate of overall benefits of early adoption of CAV technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.},
doi = {10.4271/2017-01-0086},
journal = {},
number = 1,
volume = 10,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety andmore » efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, and established that about 65% of the total miles driven by combination trucks from this data sample could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the United States provides an upper bound for scenario analysis considering fleet willingness and convenience to platoon as an estimate of overall benefits of early adoption of connected and automated vehicle technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
  • This paper describes a development of national freight demand models for 27 industry sectors covered by the 2002 Commodity Flow Survey. It postulates that the national freight demands are consistent with U.S. business patterns. Furthermore, the study hypothesizes that the flow of goods, which make up the national production processes of industries, is coherent with the information described in the 2002 Annual Input-Output Accounts developed by the Bureau of Economic Analysis. The model estimation framework hinges largely on the assumption that a relatively simple relationship exists between freight production/consumption and business patterns for each industry defined by the three-digit Northmore » American Industry Classification System industry codes (NAICS). The national freight demand model for each selected industry sector consists of two models; a freight generation model and a freight attraction model. Thus, a total of 54 simple regression models were estimated under this study. Preliminary results indicated promising freight generation and freight attraction models. Among all models, only four of them had a R2 value lower than 0.70. With additional modeling efforts, these freight demand models could be enhanced to allow transportation analysts to assess regional economic impacts associated with temporary lost of transportation services on U.S. transportation network infrastructures. Using such freight demand models and available U.S. business forecasts, future national freight demands could be forecasted within certain degrees of accuracy. These freight demand models could also enable transportation analysts to further disaggregate the CFS state-level origin-destination tables to county or zip code level.« less
  • Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models.more » One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.« less
  • Abstract not provided.
  • Abstract not provided.