skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of biaxial strain on the phase transitions of Ca ( Fe 1 x Co x ) 2 As 2

Abstract

We study the effect of applied strain as a physical control parameter for the phase transitions of Ca(Fe 1–xCo x) 2As 2 using resistivity, magnetization, x-ray diffraction, and 57Fe Mossbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. Lastly, the magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Ames Lab., Ames, IA (United States)
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1347409
Alternate Identifier(s):
OSTI ID: 1346596; OSTI ID: 1349897
Report Number(s):
IS-J-9179; IS-J-9251
Journal ID: ISSN 0031-9007; PRLTAO; TRN: US1700618
Grant/Contract Number:  
AC02-07CH11358; PD-226; GBMF4411; AC02-06CH11357; DMR10-05765
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 10; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Bohmer, A. E., Sapkota, A., Kreyssig, A., Bud’ko, S. L., Drachuck, G., Saunders, S. M., Goldman, A. I., and Canfield, P. C.. Effect of biaxial strain on the phase transitions of Ca(Fe1–xCox)2As2. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.118.107002.
Bohmer, A. E., Sapkota, A., Kreyssig, A., Bud’ko, S. L., Drachuck, G., Saunders, S. M., Goldman, A. I., & Canfield, P. C.. Effect of biaxial strain on the phase transitions of Ca(Fe1–xCox)2As2. United States. doi:10.1103/PhysRevLett.118.107002.
Bohmer, A. E., Sapkota, A., Kreyssig, A., Bud’ko, S. L., Drachuck, G., Saunders, S. M., Goldman, A. I., and Canfield, P. C.. Fri . "Effect of biaxial strain on the phase transitions of Ca(Fe1–xCox)2As2". United States. doi:10.1103/PhysRevLett.118.107002. https://www.osti.gov/servlets/purl/1347409.
@article{osti_1347409,
title = {Effect of biaxial strain on the phase transitions of Ca(Fe1–xCox)2As2},
author = {Bohmer, A. E. and Sapkota, A. and Kreyssig, A. and Bud’ko, S. L. and Drachuck, G. and Saunders, S. M. and Goldman, A. I. and Canfield, P. C.},
abstractNote = {We study the effect of applied strain as a physical control parameter for the phase transitions of Ca(Fe1–xCox)2As2 using resistivity, magnetization, x-ray diffraction, and 57Fe Mossbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. Lastly, the magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.},
doi = {10.1103/PhysRevLett.118.107002},
journal = {Physical Review Letters},
number = 10,
volume = 118,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2017},
month = {Fri Mar 10 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: