skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation

Authors:
 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1347319
DOE Contract Number:
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: SAE World Congress 2017, Detroit, MI, USA, 20170402, 20170402
Country of Publication:
United States
Language:
English

Citation Formats

Jatana, Gurneesh S, and Kaul, Brian C. Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation. United States: N. p., 2017. Web.
Jatana, Gurneesh S, & Kaul, Brian C. Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation. United States.
Jatana, Gurneesh S, and Kaul, Brian C. Sun . "Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation". United States. doi:.
@article{osti_1347319,
title = {Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation},
author = {Jatana, Gurneesh S and Kaul, Brian C},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2017},
month = {Sun Jan 01 00:00:00 EST 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Spark-ignition (SI) engines can derive substantial efficiency gains from operation at high dilution levels. Additionally, the use of exhaust gas recirculation (EGR) for charge dilution also maintains compatibility with three-way catalysts by allowing stoichiometric operation. However, running high dilution levels increases the occurrence of misfires and partial burns, which induce higher levels of cyclic-variability in engine operation. This variability has been shown to have both stochastic and deterministic components. Factors such as in-cylinder turbulence and mixing-variations can be classified as stochastic; while, charge composition is the major source of the deterministic component through its non-linear effect on ignition and flamemore » propagation characteristics. The use of these deterministic components has been previously explored to construct next-cycle control approaches that would allow stable operation near the edge of stability. Building on that work, this paper aims to understand the effect of spark strategies, specifically the use of a second spark (restrike) after the main spark, on engine operation at high dilution levels that were achieved using both excess air (i.e. lean combustion) and EGR.« less
  • Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less
  • A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustormore » arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.« less