skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.

Abstract

In 2014, the IEA PVPS Task 13 added the PVPMC as a formal activity to its technical work plan for 2014-2017. The goal of this activity is to expand the reach of the PVPMC to a broader international audience and help to reduce PV performance modeling uncertainties worldwide. One of the main deliverables of this activity is to host one or more PVPMC workshops outside the US to foster more international participation within this collaborative group. This report reviews the results of the first in a series of these joint IEA PVPS Task 13/PVPMC workshops. The 4th PV Performance Modeling Collaborative Workshop was held in Cologne, Germany at the headquarters of TÜV Rheinland on October 22-23, 2015.

Authors:
 [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1347082
Report Number(s):
SAND2017-2570R
651584
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Stein, Joshua. PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.. United States: N. p., 2017. Web. doi:10.2172/1347082.
Stein, Joshua. PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.. United States. doi:10.2172/1347082.
Stein, Joshua. Wed . "PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.". United States. doi:10.2172/1347082. https://www.osti.gov/servlets/purl/1347082.
@article{osti_1347082,
title = {PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.},
author = {Stein, Joshua},
abstractNote = {In 2014, the IEA PVPS Task 13 added the PVPMC as a formal activity to its technical work plan for 2014-2017. The goal of this activity is to expand the reach of the PVPMC to a broader international audience and help to reduce PV performance modeling uncertainties worldwide. One of the main deliverables of this activity is to host one or more PVPMC workshops outside the US to foster more international participation within this collaborative group. This report reviews the results of the first in a series of these joint IEA PVPS Task 13/PVPMC workshops. The 4th PV Performance Modeling Collaborative Workshop was held in Cologne, Germany at the headquarters of TÜV Rheinland on October 22-23, 2015.},
doi = {10.2172/1347082},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as buildingmore » and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.« less
  • During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been publishedmore » on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.« less
  • A workshop an aquifer thermal energy storage (ATES) system modeling was conducted in Seattle, Washington, on November 30 and December 1, 1989 by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high-priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; themore » need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development. 2 tabs.« less
  • The following Photovoltaics Installation Best Practices Guide is one of several work products developed by the Solar Access to Public Capital (SAPC) working group, which works to open capital market investment. SAPC membership includes over 450 leading solar developers, financiers and capital managers, law firms, rating agencies, accounting and engineering firms, and other stakeholders engaged in solar asset deployment. SAPC activities are directed toward foundational elements necessary to pool project cash flows into tradable securities: standardization of power purchase and lease contracts for residential and commercial end customers; development of performance and credit data sets to facilitate investor due diligencemore » activities; comprehension of risk perceived by rating agencies; and the development of best practice guides for PV system installation and operations and maintenance (O&M) in order to encourage high-quality system deployment and operation that may improve lifetime project performance and energy production. This PV Installation Best Practices Guide was developed through the SAPC Installation Best Practices subcommittee, a subgroup of SAPC comprised of a wide array of solar industry leaders in numerous fields of practice. The guide was developed over roughly one year and eight months of direct engagement by the subcommittee and two working group comment periods.« less
  • This PV O&M Best Practices Guide is designed to improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The PV O&M Best Practices Guide is intended to outline the minimum requirements for third-party ownership providers (“Providers”). Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for selfcertifying that they have fulfilled the guide requirements.