skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Background rejection in NEXT using deep neural networks

Abstract

Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
NEXT Collaboration
OSTI Identifier:
1346933
Report Number(s):
FERMILAB-PUB-16-422-CD; arXiv:1609.06202
Journal ID: ISSN 1748-0221; 1487439; TRN: US1700975
Grant/Contract Number:
AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Instrumentation
Additional Journal Information:
Journal Volume: 12; Journal Issue: 01; Journal ID: ISSN 1748-0221
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; analysis and statistical methods; pattern recognition; cluster finding; calibration and fitting methods; double-beta decay detectors; time projection chambers

Citation Formats

Renner, J., Farbin, A., Vidal, J. Muñoz, Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., Azevedo, C. D. R., Borges, F. I. G., Cárcel, S., Carrión, J. V., Cebrián, S., Cervera, A., Conde, C. A. N., Díaz, J., Diesburg, M., Esteve, R., Fernandes, L. M. P., Ferreira, A. L., Freitas, E. D. C., Goldschmidt, A., González-Díaz, D., Gutiérrez, R. M., Hauptman, J., Henriques, C. A. O., Morata, J. A. Hernando, Herrero, V., Jones, B., Labarga, L., Laing, A., Lebrun, P., Liubarsky, I., López-March, N., Lorca, D., Losada, M., Martín-Albo, J., Martínez-Lema, G., Martínez, A., Monrabal, F., Monteiro, C. M. B., Mora, F. J., Moutinho, L. M., Nebot-Guinot, M., Novella, P., Nygren, D., Palmeiro, B., Para, A., Pérez, J., Querol, M., Ripoll, L., Rodríguez, J., Santos, F. P., Santos, J. M. F. dos, Serra, L., Shuman, D., Simón, A., Sofka, C., Sorel, M., Toledo, J. F., Torrent, J., Tsamalaidze, Z., Veloso, J. F. C. A., White, J., Webb, R., Yahlali, N., and Yepes-Ramírez, H. Background rejection in NEXT using deep neural networks. United States: N. p., 2017. Web. doi:10.1088/1748-0221/12/01/T01004.
Renner, J., Farbin, A., Vidal, J. Muñoz, Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., Azevedo, C. D. R., Borges, F. I. G., Cárcel, S., Carrión, J. V., Cebrián, S., Cervera, A., Conde, C. A. N., Díaz, J., Diesburg, M., Esteve, R., Fernandes, L. M. P., Ferreira, A. L., Freitas, E. D. C., Goldschmidt, A., González-Díaz, D., Gutiérrez, R. M., Hauptman, J., Henriques, C. A. O., Morata, J. A. Hernando, Herrero, V., Jones, B., Labarga, L., Laing, A., Lebrun, P., Liubarsky, I., López-March, N., Lorca, D., Losada, M., Martín-Albo, J., Martínez-Lema, G., Martínez, A., Monrabal, F., Monteiro, C. M. B., Mora, F. J., Moutinho, L. M., Nebot-Guinot, M., Novella, P., Nygren, D., Palmeiro, B., Para, A., Pérez, J., Querol, M., Ripoll, L., Rodríguez, J., Santos, F. P., Santos, J. M. F. dos, Serra, L., Shuman, D., Simón, A., Sofka, C., Sorel, M., Toledo, J. F., Torrent, J., Tsamalaidze, Z., Veloso, J. F. C. A., White, J., Webb, R., Yahlali, N., & Yepes-Ramírez, H. Background rejection in NEXT using deep neural networks. United States. doi:10.1088/1748-0221/12/01/T01004.
Renner, J., Farbin, A., Vidal, J. Muñoz, Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., Azevedo, C. D. R., Borges, F. I. G., Cárcel, S., Carrión, J. V., Cebrián, S., Cervera, A., Conde, C. A. N., Díaz, J., Diesburg, M., Esteve, R., Fernandes, L. M. P., Ferreira, A. L., Freitas, E. D. C., Goldschmidt, A., González-Díaz, D., Gutiérrez, R. M., Hauptman, J., Henriques, C. A. O., Morata, J. A. Hernando, Herrero, V., Jones, B., Labarga, L., Laing, A., Lebrun, P., Liubarsky, I., López-March, N., Lorca, D., Losada, M., Martín-Albo, J., Martínez-Lema, G., Martínez, A., Monrabal, F., Monteiro, C. M. B., Mora, F. J., Moutinho, L. M., Nebot-Guinot, M., Novella, P., Nygren, D., Palmeiro, B., Para, A., Pérez, J., Querol, M., Ripoll, L., Rodríguez, J., Santos, F. P., Santos, J. M. F. dos, Serra, L., Shuman, D., Simón, A., Sofka, C., Sorel, M., Toledo, J. F., Torrent, J., Tsamalaidze, Z., Veloso, J. F. C. A., White, J., Webb, R., Yahlali, N., and Yepes-Ramírez, H. Mon . "Background rejection in NEXT using deep neural networks". United States. doi:10.1088/1748-0221/12/01/T01004. https://www.osti.gov/servlets/purl/1346933.
@article{osti_1346933,
title = {Background rejection in NEXT using deep neural networks},
author = {Renner, J. and Farbin, A. and Vidal, J. Muñoz and Benlloch-Rodríguez, J. M. and Botas, A. and Ferrario, P. and Gómez-Cadenas, J. J. and Álvarez, V. and Azevedo, C. D. R. and Borges, F. I. G. and Cárcel, S. and Carrión, J. V. and Cebrián, S. and Cervera, A. and Conde, C. A. N. and Díaz, J. and Diesburg, M. and Esteve, R. and Fernandes, L. M. P. and Ferreira, A. L. and Freitas, E. D. C. and Goldschmidt, A. and González-Díaz, D. and Gutiérrez, R. M. and Hauptman, J. and Henriques, C. A. O. and Morata, J. A. Hernando and Herrero, V. and Jones, B. and Labarga, L. and Laing, A. and Lebrun, P. and Liubarsky, I. and López-March, N. and Lorca, D. and Losada, M. and Martín-Albo, J. and Martínez-Lema, G. and Martínez, A. and Monrabal, F. and Monteiro, C. M. B. and Mora, F. J. and Moutinho, L. M. and Nebot-Guinot, M. and Novella, P. and Nygren, D. and Palmeiro, B. and Para, A. and Pérez, J. and Querol, M. and Ripoll, L. and Rodríguez, J. and Santos, F. P. and Santos, J. M. F. dos and Serra, L. and Shuman, D. and Simón, A. and Sofka, C. and Sorel, M. and Toledo, J. F. and Torrent, J. and Tsamalaidze, Z. and Veloso, J. F. C. A. and White, J. and Webb, R. and Yahlali, N. and Yepes-Ramírez, H.},
abstractNote = {Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.},
doi = {10.1088/1748-0221/12/01/T01004},
journal = {Journal of Instrumentation},
number = 01,
volume = 12,
place = {United States},
year = {Mon Jan 16 00:00:00 EST 2017},
month = {Mon Jan 16 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • The application of neural networks in high energy physics to the separation of signal from background events is studied. A variety of problems usually encountered in this sort of analysis, from variable selection to systematic errors, are presented. The top-quark search is used as an example to illustrate the problems and proposed solutions. {copyright} {ital 1996 The American Physical Society.}
  • There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less
  • Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less
  • This paper reports that neural network technology offers a number of opportunities for the control of power plants. Neural networks can learn the performance characteristics of existing plants from plant monitoring data and can be used to forecast demands, simulate plant operations, and control plant parameters. Neural networks can learn the performance characteristics of existing plants from plant monitoring data and can be used to forecast demands, simulate plant operations, and control plant parameters. Neural networks can substitute for the real system in predicting system responses for dynamic control purposes. Neural network learning can be continuous, so that the networksmore » can automatically adapt to changing characteristics of the plant. The development of neural network simulators does not require advanced skills in computer simulation or in statistical methods.« less
  • Cited by 12