skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

Abstract

Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

Authors:
 [1];  [2];  [2];  [1];  [2]
  1. Department of Mathematics and Computer Science, Emory University, Atlanta 30322 GA USA
  2. Oak Ridge National Laboratory, 1 Bethel Valley Rd. Oak Ridge 37831 TN USA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1346688
Alternate Identifier(s):
OSTI ID: 1400612
Grant/Contract Number:  
AC05-00OR22725; ERKJ247
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Numerical Linear Algebra with Applications
Additional Journal Information:
Journal Volume: 24; Journal Issue: 3; Journal ID: ISSN 1070-5325
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; iterative methods; Monte Carlo methods; preconditioning; resilience; Richardson iteration; sparse approximation inverse; sparse linear systems

Citation Formats

Benzi, Michele, Evans, Thomas M., Hamilton, Steven P., Lupo Pasini, Massimiliano, and Slattery, Stuart R. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems. United States: N. p., 2017. Web. doi:10.1002/nla.2088.
Benzi, Michele, Evans, Thomas M., Hamilton, Steven P., Lupo Pasini, Massimiliano, & Slattery, Stuart R. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems. United States. doi:10.1002/nla.2088.
Benzi, Michele, Evans, Thomas M., Hamilton, Steven P., Lupo Pasini, Massimiliano, and Slattery, Stuart R. Sun . "Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems". United States. doi:10.1002/nla.2088. https://www.osti.gov/servlets/purl/1346688.
@article{osti_1346688,
title = {Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems},
author = {Benzi, Michele and Evans, Thomas M. and Hamilton, Steven P. and Lupo Pasini, Massimiliano and Slattery, Stuart R.},
abstractNote = {Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.},
doi = {10.1002/nla.2088},
journal = {Numerical Linear Algebra with Applications},
issn = {1070-5325},
number = 3,
volume = 24,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Sequential Monte Carlo
journal, January 1962

  • Halton, J. H.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 58, Issue 1
  • DOI: 10.1017/S0305004100036227

Monte Carlo linear solvers with non-diagonal splitting
journal, February 2010


A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation
journal, February 2014

  • Evans, Thomas M.; Mosher, Scott W.; Slattery, Stuart R.
  • Journal of Computational Physics, Vol. 258
  • DOI: 10.1016/j.jcp.2013.10.043

A new highly convergent Monte Carlo method for matrix computations
journal, August 1998


A backward/forward recovery approach for the preconditioned conjugate gradient method
journal, November 2016


Sequential monte carlo techniques for the solution of linear systems
journal, June 1994

  • Halton, John H.
  • Journal of Scientific Computing, Vol. 9, Issue 2
  • DOI: 10.1007/BF01578388

A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method
journal, September 1996

  • Benzi, Michele; Meyer, Carl D.; Tůma, Miroslav
  • SIAM Journal on Scientific Computing, Vol. 17, Issue 5
  • DOI: 10.1137/S1064827594271421

Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem
journal, January 1962


�ber die partiellen Differenzengleichungen der mathematischen Physik
journal, December 1928

  • Courant, R.; Friedrichs, K.; Lewy, H.
  • Mathematische Annalen, Vol. 100, Issue 1
  • DOI: 10.1007/BF01448839

Fault Resilient Domain Decomposition Preconditioner for PDEs
journal, January 2015

  • Sargsyan, Khachik; Rizzi, Francesco; Mycek, Paul
  • SIAM Journal on Scientific Computing, Vol. 37, Issue 5
  • DOI: 10.1137/15M1014474

Convergence Analysis of Markov Chain Monte Carlo Linear Solvers Using Ulam--von Neumann Algorithm
journal, January 2013

  • Ji, Hao; Mascagni, Michael; Li, Yaohang
  • SIAM Journal on Numerical Analysis, Vol. 51, Issue 4
  • DOI: 10.1137/130904867

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
journal, May 1998


Preconditioning Techniques for Large Linear Systems: A Survey
journal, November 2002


IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems
journal, January 2014

  • Elman, Howard C.; Ramage, Alison; Silvester, David J.
  • SIAM Review, Vol. 56, Issue 2
  • DOI: 10.1137/120891393

Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults
journal, January 2015

  • Stoyanov, Miroslav; Webster, Clayton
  • SIAM Journal on Scientific Computing, Vol. 37, Issue 5
  • DOI: 10.1137/140991406

matrices and applications
journal, September 1975


Parallel resolvent Monte Carlo algorithms for linear algebra problems
journal, February 2001


On the Iterative Criterion for Generalized Diagonally Dominant Matrices
journal, January 2002