skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Weak Nuclear Force: Through the Looking Glass

Abstract

Of all of the known subatomic forces, the weak force is in many ways unique. One particularly interesting facet is that the force differentiates between a particle that is rotating clockwise and counterclockwise. In this video, Fermilab’s Dr. Don Lincoln describes this unusual property and introduces some of the historical figures who played a role in working it all out.

Authors:
Publication Date:
Research Org.:
FNAL (Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1346404
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; WEAK NUCLEAR FORCE; SUBATOMIC SPIN; SPIN DIRECTION; PARTICLES; SPIN; NEUTRINOS

Citation Formats

Lincoln, Don. The Weak Nuclear Force: Through the Looking Glass. United States: N. p., 2017. Web.
Lincoln, Don. The Weak Nuclear Force: Through the Looking Glass. United States.
Lincoln, Don. Fri . "The Weak Nuclear Force: Through the Looking Glass". United States. doi:. https://www.osti.gov/servlets/purl/1346404.
@article{osti_1346404,
title = {The Weak Nuclear Force: Through the Looking Glass},
author = {Lincoln, Don},
abstractNote = {Of all of the known subatomic forces, the weak force is in many ways unique. One particularly interesting facet is that the force differentiates between a particle that is rotating clockwise and counterclockwise. In this video, Fermilab’s Dr. Don Lincoln describes this unusual property and introduces some of the historical figures who played a role in working it all out.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2017},
month = {Fri Mar 10 00:00:00 EST 2017}
}
  • As we celebrate the completion of the Standard Model with the discovery of a Higgs-like boson, some of us are working hard on what may be the next great discovery of particle physics. The problem of missing mass, which is now known as dark matter, has persisted for nearly a century. In this time, astrophysical evidence in favor of dark matter has only grown stronger. We now know that dark matter constitutes a majority of the matter in the Universe, yet it is not composed of any particle in the Standard Model. Dark matter is necessary for the formation ofmore » galaxies and galaxy clusters and hence has shaped the Universe as we know it. Despite this body of knowledge, we still don't know what particles compose dark matter or how they interact with the particles of the Standard Model. The answers to these remaining questions are being pursued on all frontiers of discovery. In this talk, I will provide an overview of the suite of experiments that is colloquially known as "direct detection" experiments. I will describe how these experiments aim to solve the dark matter puzzle, highlight some of the most promising efforts and conclude with a discussion on future prospects.« less
  • Radioactive decay is the transmutation of one subatomic particle into another. In most instances, what happens is that existing particles move to new configurations. However in radioactive decays using the weak force, a particular kind of particle disappears and is replaced by a completely different particle. In this video, Fermilab’s Dr. Don Lincoln talks about how it all works and even describes a type of decay that has never been observed and, if it were observed, it would require the textbooks be rewritten.
  • The subatomic world is governed by three known forces, each with vastly different energy. In this video, Fermilab’s Dr. Don Lincoln takes on the weak nuclear force and shows why it is so much weaker than the other known forces.
  • Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.
  • The availability of complete or nearly complete mouse, human, and rat genomes (in addition to those from many other species) has resulted in a series of new and powerful opportunities to apply the technologies and approaches developed for large-scale genome sequencing to the study of disease. New approaches to biological problems are being explored that involve concepts from computer science such as systems theory and modern large scale computing techniques. A recent project at Celera Genomics involved sequencing protein coding regions from several humans and a chimpanzee. Computational models of evolutionary divergence enabled us to identify genes with unique evolutionarymore » signatures. These genes give us some insight into features that may be uniquely human. The laboratory mouse and rat have long been favorite mammalian models of human disease. Integrated approaches to the study of disease that combine genetics, DNA sequence analysis, and careful analysis of phenotype at a molecular level are becoming more common and powerful. In addition, evaluation of the variation inherent in normal populations is now being used to build networks to describe heart function based on the interaction of multiple phenotypes in randomized populations using a factorial design.« less