skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovery and physical characterization of a large scattered disk object at 92 au

Abstract

We report the observation and physical characterization of the possible dwarf planet 2014 UZ$$_{224}$$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $$(a,e,i) = (109~\mathrm{AU},2 0.54, 26.8^{\circ})$$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. As a result, the signal is detected at 7$$\sigma$$ significance, from which we determine a $V$-band albedo of $$18.0^{+4.0}_{-2.9}\mathrm{(stat)}^{+1.5}_{-1.2}\mathrm{(sys)}$$ percent and a diameter of $$541^{+47}_{-51}\mathrm{(stat)}^{+19}_{-20}\mathrm{(sys)}$$~km, assuming a spherical body with uniform surface properties.

Authors:
ORCiD logo; ; ; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1346353
Alternate Identifier(s):
OSTI ID: 1352812; OSTI ID: 1360906
Report Number(s):
arXiv:1702.00731; FERMILAB-PUB-17-027-AE; DES-2016-0198
Journal ID: ISSN 2041-8213; 1515437; TRN: US1700543
Grant/Contract Number:
AC02-07CH11359; AC05-00OR22725; AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal. Letters
Additional Journal Information:
Journal Volume: 839; Journal Issue: 1; Journal ID: ISSN 2041-8213
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; infrared: planetary systems; Kuiper belt: general; methods: observational; techniques: photometric

Citation Formats

Gerdes, D. W., Sako, M., Hamilton, S., Zhang, K., Khain, T., Becker, J. C., Annis, J., Wester, W., Bernstein, G. M., Scheibner, C., Zullo, L., Adams, F., Bergin, E., Walker, A. R., Mueller, J. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, Desai, S., Diehl, H. T., Eifler, T. F., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Nichol, R. C., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., and Zhang, Y.. Discovery and physical characterization of a large scattered disk object at 92 au. United States: N. p., 2017. Web. doi:10.3847/2041-8213/aa64d8.
Gerdes, D. W., Sako, M., Hamilton, S., Zhang, K., Khain, T., Becker, J. C., Annis, J., Wester, W., Bernstein, G. M., Scheibner, C., Zullo, L., Adams, F., Bergin, E., Walker, A. R., Mueller, J. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, Desai, S., Diehl, H. T., Eifler, T. F., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Nichol, R. C., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., & Zhang, Y.. Discovery and physical characterization of a large scattered disk object at 92 au. United States. doi:10.3847/2041-8213/aa64d8.
Gerdes, D. W., Sako, M., Hamilton, S., Zhang, K., Khain, T., Becker, J. C., Annis, J., Wester, W., Bernstein, G. M., Scheibner, C., Zullo, L., Adams, F., Bergin, E., Walker, A. R., Mueller, J. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, Desai, S., Diehl, H. T., Eifler, T. F., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Nichol, R. C., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., and Zhang, Y.. Mon . "Discovery and physical characterization of a large scattered disk object at 92 au". United States. doi:10.3847/2041-8213/aa64d8. https://www.osti.gov/servlets/purl/1346353.
@article{osti_1346353,
title = {Discovery and physical characterization of a large scattered disk object at 92 au},
author = {Gerdes, D. W. and Sako, M. and Hamilton, S. and Zhang, K. and Khain, T. and Becker, J. C. and Annis, J. and Wester, W. and Bernstein, G. M. and Scheibner, C. and Zullo, L. and Adams, F. and Bergin, E. and Walker, A. R. and Mueller, J. H. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Bechtol, K. and Benoit-Lévy, A. and Bertin, E. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Cunha, C. E. and Costa, L. N. da and Desai, S. and Diehl, H. T. and Eifler, T. F. and Flaugher, B. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Goldstein, D. A. and Gruen, D. and Gschwend, J. and Gutierrez, G. and Honscheid, K. and James, D. J. and Kent, S. and Krause, E. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Li, T. S. and Maia, M. A. G. and March, M. and Marshall, J. L. and Martini, P. and Menanteau, F. and Miquel, R. and Nichol, R. C. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sanchez, E. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Tucker, D. L. and Zhang, Y.},
abstractNote = {We report the observation and physical characterization of the possible dwarf planet 2014 UZ$_{224}$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $(a,e,i) = (109~\mathrm{AU},2 0.54, 26.8^{\circ})$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. As a result, the signal is detected at 7$\sigma$ significance, from which we determine a $V$-band albedo of $18.0^{+4.0}_{-2.9}\mathrm{(stat)}^{+1.5}_{-1.2}\mathrm{(sys)}$ percent and a diameter of $541^{+47}_{-51}\mathrm{(stat)}^{+19}_{-20}\mathrm{(sys)}$~km, assuming a spherical body with uniform surface properties.},
doi = {10.3847/2041-8213/aa64d8},
journal = {The Astrophysical Journal. Letters},
number = 1,
volume = 839,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • We report the observation and physical characterization of the possible dwarf planet 2014 UZmore » $$_{224}$$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $$(a,e,i) = (109~\mathrm{AU},2 0.54, 26.8^{\circ})$$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. As a result, the signal is detected at 7$$\sigma$$ significance, from which we determine a $V$-band albedo of $$18.0^{+4.0}_{-2.9}\mathrm{(stat)}^{+1.5}_{-1.2}\mathrm{(sys)}$$ percent and a diameter of $$541^{+47}_{-51}\mathrm{(stat)}^{+19}_{-20}\mathrm{(sys)}$$~km, assuming a spherical body with uniform surface properties.« less
  • We present a 0.5-2.2 {mu}m scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances >40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at {approx}80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency ofmore » the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady {alpha}-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 M{sub Circled-Plus }.« less
  • We present observations of the embedded massive young stellar object (YSO) candidate 08576nr292, obtained with X-shooter and SINFONI on the ESO Very Large Telescope (VLT). The flux-calibrated, medium-resolution X-shooter spectrum (300-2500 nm) includes over 300 emission lines, but no (photospheric) absorption lines, and is consistent with a reddened disk spectrum. Among the emission lines are three hydrogen series and helium lines, both permitted and forbidden metal lines, and CO first-overtone emission. A representative sample of lines with different morphologies is presented. The H{alpha} and Ca II triplet lines are very strong, with profiles indicative of outflow and-possibly-infall, usually observed inmore » accreting stars. These lines include a blueshifted absorption component at {approx}-125 km s{sup -1}. The He I and metal-line profiles are double peaked, with a likely origin in a circumstellar disk. The forbidden lines, associated with outflow, have a single blueshifted emission component centered at -125 km s{sup -1}, coinciding with the absorption components in H{alpha} and Ca II. SINFONI H- and K-band integral-field spectroscopy of the cluster environment demonstrates that the [Fe II] emission is produced by a jet originating at the location of 08576nr292. Because the spectral type of the central object cannot be determined, its mass remains uncertain. We argue that 08576nr292 is an intermediate-mass YSO with a high accretion rate ( M-dot{sub acc}{approx}10{sup -6}-10{sup -5} M{sub sun} yr{sup -1}). These observations demonstrate the potential of X-shooter and SINFONI to study in great detail an accretion disk-jet system, rarely seen around the more massive YSOs.« less
  • We present high-resolution, H-band imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of a dust-depleted cavity at r {<=} 46 AU, our observations reveal the presence of scattered light components as close as 0.''2 ({approx} 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.''5 ({approx} 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h {approx} 0.1, which is consistent with previous sub-mmmore » observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelength observations.« less