skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

Abstract

The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels of protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greatermore » than 120 years) SNF storage systems.« less

Authors:
 [1];  [2];  [2];  [3]
  1. Univ. of California, Irvine, CA (United States)
  2. Univ. of Houston, TX (United States)
  3. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1346143
Report Number(s):
12-3545
12-3545
DOE Contract Number:
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Li, Mo, Nakshatrala, Kalyana, William, Kasper, and Xi, Yungping. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems. United States: N. p., 2017. Web. doi:10.2172/1346143.
Li, Mo, Nakshatrala, Kalyana, William, Kasper, & Xi, Yungping. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems. United States. doi:10.2172/1346143.
Li, Mo, Nakshatrala, Kalyana, William, Kasper, and Xi, Yungping. Wed . "Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems". United States. doi:10.2172/1346143. https://www.osti.gov/servlets/purl/1346143.
@article{osti_1346143,
title = {Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems},
author = {Li, Mo and Nakshatrala, Kalyana and William, Kasper and Xi, Yungping},
abstractNote = {The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels of protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.},
doi = {10.2172/1346143},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 08 00:00:00 EST 2017},
month = {Wed Feb 08 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less
  • Results of an investigation are presented on the dry powder lubrication of gears, bearings, and retainers for use in vacuum environments. The wear and friction characteristics of various dry powders and dry self-lubricating materials for use in ball bearings were evaluated and screened in a dry inert atmosphere in laboratory test apparatus under rotating speeds and loads similar to that found in 2 to 7 h.p. electric motors. The materials evaluated included reinforced thermosetting plastics, dry lubricant filled and unfilled thermoplastics and dry lubricant filled sintered alloys. Dry powder and self- lubricating materials were subjected to the vacuum conditions inmore » the range of 1 x 10/sup -6/ to 1 x 10/sup -9/ mm Hg, and at--60 to 1000 deg F to determine the rate of the outgassing and/or decomposition of each material. Dry ball bearing (204 size, 22 mm bore) soaking and operating tests were conducted using retainers fabricated from the most promising materials. The bearings were operated at a speed of l800 rpm, radial load of 75 lbs, axial load of 5 lbs, and tested under vacuum and temperature conditions previously described. Special bearings and retainer materials were used for exploratory tests up to 1500 deg F. (auth)« less
  • The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.« less