skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shape tunable plasmonic nanoparticles

Abstract

Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.

Inventors:
;
Publication Date:
Research Org.:
Georgia Tech Research Corporation, Atlanta, GA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1346047
Patent Number(s):
9,588,124
Application Number:
11/913,915
Assignee:
Georgia Tech Research Corporation CHO
DOE Contract Number:
FG02-97ER14799
Resource Type:
Patent
Resource Relation:
Patent File Date: 2006 May 11
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 60 APPLIED LIFE SCIENCES

Citation Formats

El-Sayed, Mostafa A., and El-Sayed, Ivan Homer. Shape tunable plasmonic nanoparticles. United States: N. p., 2017. Web.
El-Sayed, Mostafa A., & El-Sayed, Ivan Homer. Shape tunable plasmonic nanoparticles. United States.
El-Sayed, Mostafa A., and El-Sayed, Ivan Homer. Tue . "Shape tunable plasmonic nanoparticles". United States. doi:. https://www.osti.gov/servlets/purl/1346047.
@article{osti_1346047,
title = {Shape tunable plasmonic nanoparticles},
author = {El-Sayed, Mostafa A. and El-Sayed, Ivan Homer},
abstractNote = {Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 07 00:00:00 EST 2017},
month = {Tue Mar 07 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
  • The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical responsemore » of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.« less
  • Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less
  • We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.
  • Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod atmore » one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to interlock with one another quite easily. The dimers that form as a result display optical behavior that differs from what has been previously reported about nanorod dimers. Simulated surface charge density patterns reveal that hybridization of LSPR modes occurs readily along the lobes of individual dumbbells in some situations. A pentamer of dumbbells also displays hybridization of modes, and “hot spots” are observed at junctions between pairings of dumbbells. In the final set of experiments, the assembly behavior of nanoparticles in solution was observed in real time. In general, large assemblies of nanoparticles display backbone-like rigidity, but an interesting variety of movements is permitted within the larger structures.« less