skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Technical Report for DOE theory grant DE-SC0010416 Gyrokinetic Particle Simulation of Plasma Edge Pedestal


The problem of stability and transport of pressure driven modes in DIII-D tokamak pedestal region has been studied vigorously using gyrokinetic simulations

  1. Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
Report Number(s):
Final Technical Report DE-SC0010416
DOE Contract Number:
Resource Type:
Technical Report
Country of Publication:
United States

Citation Formats

Holod, Ihor. Final Technical Report for DOE theory grant DE-SC0010416 Gyrokinetic Particle Simulation of Plasma Edge Pedestal. United States: N. p., 2017. Web. doi:10.2172/1346024.
Holod, Ihor. Final Technical Report for DOE theory grant DE-SC0010416 Gyrokinetic Particle Simulation of Plasma Edge Pedestal. United States. doi:10.2172/1346024.
Holod, Ihor. Wed . "Final Technical Report for DOE theory grant DE-SC0010416 Gyrokinetic Particle Simulation of Plasma Edge Pedestal". United States. doi:10.2172/1346024.
title = {Final Technical Report for DOE theory grant DE-SC0010416 Gyrokinetic Particle Simulation of Plasma Edge Pedestal},
author = {Holod, Ihor},
abstractNote = {The problem of stability and transport of pressure driven modes in DIII-D tokamak pedestal region has been studied vigorously using gyrokinetic simulations},
doi = {10.2172/1346024},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 08 00:00:00 EST 2017},
month = {Wed Mar 08 00:00:00 EST 2017}

Technical Report:

Save / Share:
  • The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for themore » experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).« less
  • We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized bymore » the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.« less
  • Research in High-Energy particle physics and astrophysics is done in the setting of an Organized Research Unit, the Santa Cruz Institute for Particle Physic.
  • Our research focuses on the “Cosmic Frontier”, one of the three principle thrusts of the DoE Office of Science High Energy Physics research program. The 2013 community summer study “Snowmass on the Mississippi” catalyzed joint work to describe the status and future prospects of this research thrust. Over its history, the field of cosmic ray studies has provided many discoveries of central importance to the the progress of high energy physics, including the identification of new elementary particles, measurements of particle interactions far above accelerator energies, and the confirmation of neutrino oscillations. In our research we continued this tradition, employingmore » 2 instruments (the Auger Observatory and the HAWC Observatory) to study high energy physics questions using cosmic rays. One approach to addressing particle physics questions at the cosmic frontier is to study the very highest energy cosmic rays. This has been the major thrust of our research effort. The two largest currently operating ultra-high energy cosmic ray (UHECR) observatories are the Pierre Auger Observatory in the Southern hemisphere, covering an area of 3000 km 2 and the Telescope Array (TA) in the Northern hemisphere, covering about 700 km 2. The observatories sample the cosmic ray air showers at ground level (with 1660 water Cerenkov stations in the Auger surface detector), and also measure the longitudinal development of air showers on clear moonless nights (approx. 10% of the events) using atmospheric fluorescence detectors. The observatories have recently installed low energy extensions, which provide an overlap with the LHC energy regime. The Auger and TA teams have established joint working groups to discuss experimental methods, compare data analyses and modeling, and perform cross calibrations. Another approach is to study high energy gamma rays. The High Altitude Water Cerenkov (HAWC) gamma-ray observatory is located at 4100 m above sea level near Pico de Orizaba in central Mexico. HAWC is the most sensitive, wide field of view, TeV gamma-ray observatory in operation. After 4 years of construction, operation of the full detector began in March 2015. The HAWC detector contains 300 tanks each 7.3 m in diameter and 4.5 m deep containing pure water. Each water tank is instrumented with 4 upward-viewing photomultiplier tubes mounted at their bottom. The water tanks record the energy deposited by and arrival times of the constituent components of impinging extensive air showers (EAS). The tanks are close-packed to optimize the spatial sampling of the shower front. The distribution of deposited energy across the shower is used for gamma-hadron rejection. Showers with large energy deposit away from the core are rejected as being hadron-initiated. The detector operates at full efficiency above 3 TeV. The angular resolution above that energy approaches 0.1 degree. As the detector operates both day and night, the wide field of view of ~2 sr, allows ~2/3 of the sky to be observed each day.« less
  • This project involved studies pertinent to the formation of new particles by homogeneous nucleation in the atmosphere. The research focused on (1) the development of instrumentation to measure size distributions of freshly nucleated particles in the 3 to 10 nm diameter range, (2) laboratory studies of particle thermodynamic and transport properties relevant to nucleation in the atmosphere, and (3) field measurements of new particle formation by homogeneous nucleation. Highlights of the achievements under this grant are summarized briefly. A complete list of publications and presentations supported by the grant is given.