skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Porous graphene nanocages for battery applications

Abstract

An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

Inventors:
; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1346011
Patent Number(s):
9,590,248
Application Number:
13/796,672
Assignee:
UCHICAGO ARGONNE, LLC ANL
DOE Contract Number:
AC02-06CH11357
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 12
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Amine, Khalil, Lu, Jun, Du, Peng, Wen, Jianguo, and Curtiss, Larry A. Porous graphene nanocages for battery applications. United States: N. p., 2017. Web.
Amine, Khalil, Lu, Jun, Du, Peng, Wen, Jianguo, & Curtiss, Larry A. Porous graphene nanocages for battery applications. United States.
Amine, Khalil, Lu, Jun, Du, Peng, Wen, Jianguo, and Curtiss, Larry A. Tue . "Porous graphene nanocages for battery applications". United States. doi:. https://www.osti.gov/servlets/purl/1346011.
@article{osti_1346011,
title = {Porous graphene nanocages for battery applications},
author = {Amine, Khalil and Lu, Jun and Du, Peng and Wen, Jianguo and Curtiss, Larry A.},
abstractNote = {An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 07 00:00:00 EST 2017},
month = {Tue Mar 07 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • This patent describes a zinc-bromide electrochemical cell. It comprises: a cathode element comprising a pressure-molded porous composite comprising electrically conductive particulate carbon selected from the group consisting of carbon black, graphite and mixtures thereof having a particle size distribution of 0 to 45 {mu}m and a thermoplastic resin, the carbon and the resin being in a weight ratio from about 1:5 to 1:1; the composite characterized by 80--95% porosity by volume and a pore size diameter distribution from about 5 microns to about 200 microns.
  • Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..
  • Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
  • A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.
  • The uniformed battery plate for lead-acid batteries consists of a perforated grid sheet with a porous structure adhering. The structure contains lead oxide and small amounts of a foam producing and stabilising agent. A network of vinyl resin plastic provides sufficient rigidity for plate handling.