skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-scale modeling of carbon capture systems

Abstract

The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO 2 capture. The sorbent model includes a detailed treatment of transport and amine-CO 2- H 2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.

Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1345956
Report Number(s):
LA-UR-17-21875
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Energy Sciences

Citation Formats

Kress, Joel David. Multi-scale modeling of carbon capture systems. United States: N. p., 2017. Web. doi:10.2172/1345956.
Kress, Joel David. Multi-scale modeling of carbon capture systems. United States. doi:10.2172/1345956.
Kress, Joel David. Fri . "Multi-scale modeling of carbon capture systems". United States. doi:10.2172/1345956. https://www.osti.gov/servlets/purl/1345956.
@article{osti_1345956,
title = {Multi-scale modeling of carbon capture systems},
author = {Kress, Joel David},
abstractNote = {The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO2 capture. The sorbent model includes a detailed treatment of transport and amine-CO2- H2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.},
doi = {10.2172/1345956},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 03 00:00:00 EST 2017},
month = {Fri Mar 03 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.
  • Abstract: Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry and universities that is developing and deploying a suite of multi-scale modeling and simulation tools including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamic (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be usedmore » within detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models.« less
  • Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry and universities that is developing and deploying a suite of multi-scale modeling and simulation tools including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamic (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be used withinmore » detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models.« less
  • This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties ofmore » underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.« less
  • The overall objective of this project is to achieve the DOE’s goal to develop advanced CO 2 capture and separation technologies that can realize at least 90% CO 2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO 2 captured. The principal objective is to test a CO 2 capture process that will reduce the parasitic plant load by using a CO 2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption,more » high CO 2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.« less