skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutrino masses and scalar singlet dark matter

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1345855
Grant/Contract Number:
SC 0016013; PHY/P/SUB/01
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 5; Related Information: CHORUS Timestamp: 2017-03-06 22:10:31; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Bhattacharya, Subhaditya, Jana, Sudip, and Nandi, S. Neutrino masses and scalar singlet dark matter. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.95.055003.
Bhattacharya, Subhaditya, Jana, Sudip, & Nandi, S. Neutrino masses and scalar singlet dark matter. United States. doi:10.1103/PhysRevD.95.055003.
Bhattacharya, Subhaditya, Jana, Sudip, and Nandi, S. Mon . "Neutrino masses and scalar singlet dark matter". United States. doi:10.1103/PhysRevD.95.055003.
@article{osti_1345855,
title = {Neutrino masses and scalar singlet dark matter},
author = {Bhattacharya, Subhaditya and Jana, Sudip and Nandi, S.},
abstractNote = {},
doi = {10.1103/PhysRevD.95.055003},
journal = {Physical Review D},
number = 5,
volume = 95,
place = {United States},
year = {Mon Mar 06 00:00:00 EST 2017},
month = {Mon Mar 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1103/PhysRevD.95.055003

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • We show that within the inverse seesaw mechanism for generating neutrino masses, minimal supergravity naturally provides the scalar neutrino as the lightest superparticle. We also demonstrate that such schemes naturally reconcile the small neutrino masses with the correct relic scalar neutrino dark matter abundance and accessible direct detection rates in nuclear recoil experiments. This way, inverse seesaw minimal supergravity offers a common solution to the generation of the neutrino mass and to the origin of dark matter.
  • We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all boundsmore » related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.« less
  • We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all boundsmore » related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.« less
  • We investigate the early Universe production of sterile neutrino Dark Matter by the decays of singlet scalars. All previous studies applied simplifying assumptions and/or studied the process only on the level of number densities, which makes it impossible to give statements about cosmic structure formation. We overcome these issues by dropping all simplifying assumptions (except for one we showed earlier to work perfectly) and by computing the full course of Dark Matter production on the level of non-thermal momentum distribution functions. We are thus in the position to study a broad range of aspects of the resulting settings and applymore » a broad set of bounds in a reliable manner. We have a particular focus on how to incorporate bounds from structure formation on the level of the linear power spectrum, since the simplistic estimate using the free-streaming horizon clearly fails for highly non-thermal distributions. Our work comprises the most detailed and comprehensive study of sterile neutrino Dark Matter production by scalar decays presented so far.« less
  • We present a scenario in which a remarkably simple relation linking dark matter properties and neutrino masses naturally emerges. This framework points towards a low energy theory where the neutrino mass originates from the existence of a light scalar dark matter particle in the keV-MeV mass range. We discuss different ways to constrain and test this scenario by means of astrophysical and cosmological observations as well as laboratory experiments. Finally, we point out that one interesting aspect is that the implied mass range is compatible with the one required for the explanation of the mysterious emission of 511 keV photonsmore » from the center of our galaxy in terms of dark matter annihilation into e{sup +}e{sup -} pairs.« less