skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and Performance Evaluations of SAPO-34 Membranes- Milestone Report for FCRD-MRWFD-2016-000263

Abstract

This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on tubular supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration that correspond to the range anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The separation factors calculated from the measured tritium concentrations ranged from 0.83-0.98. The HTO concentration was three orders of magnitude lower than prior experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes on alumina disk supports. Although the membrane performance characterization results for HTO were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water.more » Several new approaches are proposed, such as tuning the diffusion coefficient of HTO, and optimization of membrane thickness that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.« less

Authors:
 [1];  [1];  [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Georgia Inst. of Technology, Atlanta, GA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1345777
Report Number(s):
ORNL/TM-2016/248
AF5805010; NEAF327
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; deuterated water; tritiated water; zeolite membranes

Citation Formats

Bhave, Ramesh R., Jubin, Robert Thomas, Spencer, Barry B., and Nair, Sankar. Synthesis and Performance Evaluations of SAPO-34 Membranes- Milestone Report for FCRD-MRWFD-2016-000263. United States: N. p., 2016. Web. doi:10.2172/1345777.
Bhave, Ramesh R., Jubin, Robert Thomas, Spencer, Barry B., & Nair, Sankar. Synthesis and Performance Evaluations of SAPO-34 Membranes- Milestone Report for FCRD-MRWFD-2016-000263. United States. doi:10.2172/1345777.
Bhave, Ramesh R., Jubin, Robert Thomas, Spencer, Barry B., and Nair, Sankar. 2016. "Synthesis and Performance Evaluations of SAPO-34 Membranes- Milestone Report for FCRD-MRWFD-2016-000263". United States. doi:10.2172/1345777. https://www.osti.gov/servlets/purl/1345777.
@article{osti_1345777,
title = {Synthesis and Performance Evaluations of SAPO-34 Membranes- Milestone Report for FCRD-MRWFD-2016-000263},
author = {Bhave, Ramesh R. and Jubin, Robert Thomas and Spencer, Barry B. and Nair, Sankar},
abstractNote = {This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on tubular supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration that correspond to the range anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The separation factors calculated from the measured tritium concentrations ranged from 0.83-0.98. The HTO concentration was three orders of magnitude lower than prior experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes on alumina disk supports. Although the membrane performance characterization results for HTO were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. Several new approaches are proposed, such as tuning the diffusion coefficient of HTO, and optimization of membrane thickness that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.},
doi = {10.2172/1345777},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Technical Report:

Save / Share:
  • The objective of this study was to perform mechanical testing on large scale heats of the advanced ODS 14YWT alloy to investigate the effects of processing parameters on mechanical properties. Mechanical properties tests were conducted on two heats of the advanced ODS 14YWT ferritic alloy: the 14YWT-SM11 was produced by extrusion at ORNL and OW4 was produced by HIP at UCSB. The 14YWT-SM11 showed very high tensile strength compared to OW4, but showed less ductility as a result. The fracture toughness transition temperature of 14YWT-SM11 was determined in two orientations and showed T{sub 0} = 48 C in the favorablymore » strong L-T direction while shifting by 63 C to T{sub 0} = 111 C in the weaker T-L direction. The fracture toughness transition temperature for OW4 was not determined but appeared to be within the range observed for 14YWT-SM11. The fracture toughness of 14YWT-SM11 at room temperature was 86.8 MPa{radical}m and 93.1 MPa{radical}m, which was much higher than that of OW4 (27.4 MPa{radical}m). The strain rate jump tests conducted on OW4 indicated that the creep properties were similar to MA957 at 750 C.« less
  • Ferritic FeCrAl-based alloys show increased oxidation resistance for accident tolerant applications as fuel cladding. This study focuses on investigating the weldability of three model FeCrAl alloys with varying alloy compositions using laser-welding techniques. A detailed study of the mechanical properties of bead-on-plate welds was used to determine the quality of welds as a function of alloy composition. Laser welding resulted in defect free welds devoid of cracking or inclusions. Initial results indicate a reduction in the yield strength of weldments compared to the base material due to distinct changes in the microstructure within the fusion zone. Although a loss ofmore » yield strength was observed, there was no significant difference in the magnitude of the tensile property changes with varying Cr or Al content. Also, there was no evidence of embrittlement; the material in the fusion zones demonstrated ductile behavior with high local ductility.« less
  • The Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) Level 1 milestone to “Assess the analysis capability for core-wide [pressurized water reactor] PWR Pellet- Clad Interaction (PCI) screening and demonstrate detailed 3-D analysis on selected sub-region” (L1:CASL.P13.03) requires a particular type of nuclear power plant for the assessment. This report documents the operating reactor and cycles chosen for this assessment in completion of the physics integration (PHI) milestone to “Determine Operating Reactor to use for PCI L1 Milestone” (L3:PHI.CMD.P12.02). Watts Bar Unit 1 experienced (at least) one fuel rod failure in each of cycles 6 and 7, andmore » at least one was deemed to be duty related rather than being primarily related to a manufacturing defect or grid effects. This brief report documents that the data required to model cycles 1–12 of Watts Bar Unit 1 using VERA-CS contains sufficient data to model the PHI portion of the PCI challenge problem. A list of additional data needs is also provided that will be important for verification and validation of the BISON results.« less
  • Accurate simulations of fluid and plasma flows require accurate thermodynamic properties of the fluids or plasmas. This thermodynamic information is represented by the equations of state of the materials. For pure materials, the equations of state may be represented by analytical models for idealized circumstances, or by tabular means, such as the Sesame tables. However, when a computational cell has a mixture of two or more fluids, the equations of state are not well understood, particularly under the circumstances of high energy densities. This is a particularly difficult issue for Eulerian codes, wherein mixed cells arise simply due to themore » advection process. LANL Eulerian codes typically assume an “Amagat’s Law” (or Law of Partial Volumes) for the mixture in which the pressures and temperatures of fluids are at an equilibrium that is consistent with the fluids being segregated within the cell. However, for purposes of computing other EOS properties, e.g., bulk modulus, or sound speed, the fluids are considered to be fully “mixed”. LANL has also been investigating implementing instead “Dalton’s Law” in which the total pressure is considered to be the sum of the partial pressures within the cell. For ideal gases, these two laws give the same result. Other possibilities are nonpressure- temperature-equilibrated approaches in which the two fluids are not assumed to “mix” at all, and the EOS properties of the cell are computed from, say, volume-weighted averages of the individual fluid properties. The assumption of the EOS properties within a mixed cell can have a pronounced effect on the behavior of the cell, resulting in, for example, different shock speeds, pressures, temperatures and densities within the cell. There is no apparent consensus as to which approach is best under HED conditions, though we note that under typical atmospheric and near atmospheric conditions the differences may be slight.« less
  • This report summarizes the activities in FY16 toward satisfying the CSSE 2016 L3 milestone to deliver in situ to XTD end users of EAP codes. The Milestone was accomplished with ongoing work to ensure the capability is maintained and developed. Two XTD end users used the in situ capability in Rage. A production ParaView capability was created in the HPC and Desktop environment. Two new capabilities were added to ParaView in support of an EAP in situ workflow. We also worked with various support groups at the lab to deploy a production ParaView in the LANL environment for both desktopmore » and HPC systems. . In addition, for this milestone, we moved two VTK based filters from research objects into the production ParaView code to support a variety of standard visualization pipelines for our EAP codes.« less