skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SNS RFQ Cooling Water Chemical Treatment

Abstract

The purpose of this document is to describe the chemical treatment protocol for the cooling water used with the installed RFQ (the Berkeley RFQ) so it can be adopted it for a new RFQ (the SNS RFQ).

Authors:
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1344273
Report Number(s):
ORNL/TM-2017/10
KC0402010; ERKCSNR; SNS-RAD-MS-TR-0011, R00
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; SNS RFQ Cooling Water Chemical Treatment

Citation Formats

Magda, Karoly. SNS RFQ Cooling Water Chemical Treatment. United States: N. p., 2017. Web. doi:10.2172/1344273.
Magda, Karoly. SNS RFQ Cooling Water Chemical Treatment. United States. doi:10.2172/1344273.
Magda, Karoly. Wed . "SNS RFQ Cooling Water Chemical Treatment". United States. doi:10.2172/1344273. https://www.osti.gov/servlets/purl/1344273.
@article{osti_1344273,
title = {SNS RFQ Cooling Water Chemical Treatment},
author = {Magda, Karoly},
abstractNote = {The purpose of this document is to describe the chemical treatment protocol for the cooling water used with the installed RFQ (the Berkeley RFQ) so it can be adopted it for a new RFQ (the SNS RFQ).},
doi = {10.2172/1344273},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiarymore » treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially MWW_NF) better treatment alternatives from the environmental sustainability perspective since they exhibited minimal contribution to environmental damage from emissions.« less
  • This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINTmore » modeling effort are presented and discussed.« less
  • The Electric Power Research Institute is sponsoring a three phase research project to develop a design and operating methodology for recirculating cooling water systems at high concentration factors. As part of this program, a portable field test (FTU) has been designed and fabricated for operation at sites with different makeup water qualities. Phase II testing at the first site, Comanche Generating Station in Pueblo, Colorado, started February 1981 and stopped December 1981. During the field testing, several cooling water treatment options were used to increase the concentration factor for operating the FTU. In addition to the field test program, additionalmore » activities were conducted to supplement and support the data compiled from the field program. These additional activities included a literature survey, laboratory studies, and an independent makeup softener test. This report presents the results of these supplemental activities. 61 refs., 57 figs., 37 tabs.« less
  • Polyvinylchloride (PVC) film-type cellular fill is the fill of choice in replacing cement asbestor board fill in existing cooling towers and in new cooling towers because of its high thermal performance, ease of installation, and low initial cost. However, PVC fill has been found to foul quickly with biological and sediment material, significant reducing tower performance and the fill`s useful life. The Anti-Fouling Chemical Additives Test Tower (AFCATT) has been built to study accumulation rates of fouling deposits in corrugated PVC film fill and to study methods of cleaning and preventing the fouling deposits. This small mechanical draft cooling towermore » is located next to the Unit 4 natural draft cooling tower at Georgia Power Company`s Plant Bowen. The once-through mechanical draft tower receives hot water from the condenser and returns the cold water to the basin of the host tower. The pilot tower is divided into four chambers allowing for three different treatment programs and one control to be run simultaneously. PVC fill packs are suspended from load cells to allow the weight of the fill packs to be measured continuously. Six vendors participated in the summer 1993 test program. Each proposed different methods of cleaning the fouled fill and were given the opportunity to try their proposed method of fill cleaning. The success of each treatment program was determined by its ability to reduce fill pack weight (i.e., reduce fouling).« less
  • Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less