skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Site Identity and Importance in Cosubstituted Bixbyite In2O3

Authors:
ORCiD logo; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF)
OSTI Identifier:
1343994
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystals; Journal Volume: 7; Journal Issue: 2
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Rickert, Karl, Harris, Jeremy, Sedefoglu, Nazmi, Kavak, Hamide, Ellis, Donald, and Poeppelmeier, Kenneth. Site Identity and Importance in Cosubstituted Bixbyite In2O3. United States: N. p., 2017. Web. doi:10.3390/cryst7020047.
Rickert, Karl, Harris, Jeremy, Sedefoglu, Nazmi, Kavak, Hamide, Ellis, Donald, & Poeppelmeier, Kenneth. Site Identity and Importance in Cosubstituted Bixbyite In2O3. United States. doi:10.3390/cryst7020047.
Rickert, Karl, Harris, Jeremy, Sedefoglu, Nazmi, Kavak, Hamide, Ellis, Donald, and Poeppelmeier, Kenneth. Wed . "Site Identity and Importance in Cosubstituted Bixbyite In2O3". United States. doi:10.3390/cryst7020047.
@article{osti_1343994,
title = {Site Identity and Importance in Cosubstituted Bixbyite In2O3},
author = {Rickert, Karl and Harris, Jeremy and Sedefoglu, Nazmi and Kavak, Hamide and Ellis, Donald and Poeppelmeier, Kenneth},
abstractNote = {},
doi = {10.3390/cryst7020047},
journal = {Crystals},
number = 2,
volume = 7,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • The bixbyite structure of In 2O 3 has two nonequivalent, 6-coordinate cation sites and, when Sn is doped into In 2O 3, the Sn prefers the “b-site” and produces a highly conductive material. When divalent/tetravalent cation pairs are cosubstituted into In 2O 3, however, the conductivity increases to a lesser extent and the site occupancy is less understood. We examine the site occupancy in the Mg xIn 2–2xSn xO 3 and Zn xIn 2–2xSn xO 3 systems with high resolution X-ray and neutron diffraction and density functional theory computations, respectively. In these sample cases and those that are previously reportedmore » in the M xIn 2–2xSn xO 3 (M = Cu, Ni, or Zn) systems, the solubility limit is greater than 25%, ensuring that the b-site cannot be the exclusively preferred site as it is in Sn:In 2O 3. Prior to this saturation point, we report that the M 2+ cation always has at least a partial occupancy on the d-site and the Sn 4+ cation has at least a partial occupancy on the b-site. The energies of formation for these configurations are highly favored, and prefer that the divalent and tetravalent substitutes are adjacent in the crystal lattice, which suggests short range ordering. Diffuse reflectance and 4-point probe measurements of Mg xIn 2–xSn xO 3 demonstrate that it can maintain an optical band gap >2.8 eV while surpassing 1000 S/cm in conductivity. Furthermore, understanding how multiple constituents occupy the two nonequivalent cation sites can provide information on how to optimize cosubstituted systems to increase Sn solubility while maintaining its dopant nature, achieving maximum conductivity.« less
  • Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was foundmore » to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
  • Mitochondrial Complex II (succinate:ubiquinoneoxidoreductase) is purified in a partially innactivated state, which canbe activated by removal of tightly bound oxaloacetate (Kearney, E.B. etal. Biochem Biophys Res Commun 49, 1115-1121). We crystallized Complex IIin the presence of oxaloacetate or with the endogenous inhibitor bound.The structure showed a ligand essentially identical to the "malate-likeintermediate" found in Shewanella Flavocytochrome c crystallized withfumarate (Taylor, P., et al. Nat Struct Biol 6, 1108-1112.)Crystallization of Complex II in the presence of excess fumarate alsogave the malate-like intermediate or a mixture of that and fumarate atthe active site. In order to more conveniently monitor the occupationstate ofmore » the dicarboxylate site, we are developing a library of UV/Visspectral effects induced by binding different ligands to the site.Treatment with fumarate results in rapid development of the fumaratedifference spectrum and then a very slow conversion into a speciesspectrally similar to the OAA liganded complex. Complex II is known to becapable of oxidizing malate to the enol form of oxaloacetate (Belikova,Y.O., et al. Biochim Biophys Acta 936, 1-9). The observations abovesuggest it may also be capable of interconverting fumarate and malate. Itmay be useful for understanding the mechanism and regulation of theenzyme to identify the malate-like intermediate and its pathway offormation from oxaloacetate or fumarate.« less
  • No abstract prepared.
  • Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo 2C) for the deoxygenation of acetic acid,more » an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo 2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less